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Abstract— Recent studies have shown that many real networks
follow the power-law distribution of node degrees. Instead of ran-
dom connectivity, however, power-law connectivity suffers from
the vulnerability of targeted attacks, since its interconnection is
heavily relying on a very few nodes. In addition, the connectivity
of power-law networks becomes more concentrated on the small
group of nodes as time goes by, which can be explained by
Barabasi and Albert’s rich-get-richer model. The rich-get-richer
model is known as the most widely accepted generative model and
follows the rule of preferential attachment to high-degree nodes.
Thus, the preference of high-degree nodes to connect a newly
created node renders the network less resilient as evolves. In
this paper, we propose three different evolving strategies which
can be applicable to the Internet topologies and the resiliency
of evolving networks are measured by two resiliency metrics.
From the experiments, we show that choosing an appropriate
evolving strategy is more effective to increase the resiliency of
network topology, rather than simply adding more links. Also,
we show the possibility of improving the attack resiliency of
Internet topology by adapting only a part of networks, e.g. 20—
40%, to a new evolving strategy, such as change from the max-
degree preference to the average-degree preference, which can
be considered as a practical range of deployment.

Keywords— Evolving strategy, attack resiliency, power-law
distribution, network topology.

I. INTRODUCTION

The Internet can be represented as a huge topology which
is composed of innumerable computers and links between
them. Previous studies have shown that the Internet expands
its topology over time, and the distribution of the number of
connections per node follows a power-law distribution. The
power-law distribution also expresses the relation between
degree, rank and frequency of a node [1], [2]. It was suggested
that the probability of attachment between existing nodes and a
newly generated node is proportional to the degree of existing
nodes, i.e.preferential attachment [3], [4], then the resulting
network leads to the power-law distribution. Recent studies
found that network topologies evolving with the strategy of
preferential attachment, including the Internet, are getting less
resilient to network attacks [5], [6].

In this paper, we present a topological and degree-based
approach to measure the attack resiliency of a network topol-
ogy. Power-law networks like the Internet are vulnerable to
the attack on high-degree nodes, which can give serious
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damage to a network. We suggest two metrics which reflect the
attack resiliency. One metric, v, is a vertex cover ratio which
have been used in previous studies [5], [6]. Three evolving
strategies are also suggested to expand a network topology.
Max strategy let a newly generated node attach to a high-
degree node. Avg strategy makes a newly generated node has
higher probability of being connected to average-degree nodes.
Min strategy has probability distribution that prefers minimum-
degree nodes. Evaluation shows the effectiveness of suggested
evolving strategies under various network environments.

The main contribution of this paper consists of four parts.
First, we propose three evolving strategies and the resiliency
of growing networks are measured by two resiliency metrics.
One metric is the ratio of vertex covering nodes, and the other
metric is the connectivity of the remaining network after the
occurrence of an attack. Second, we show that the current
Internet topology becomes weaker and weaker over time, using
the resiliency metrics. Third, we show that it is possible to
increase the resiliency of network topology by altering the
current evolving strategy to another one. Furthermore, the
increment of attack resiliency can be achievable in a practical
range, such as 20-40% of deployment of new strategies.
Finally, it is shown that the best strategy can be found for
designing newborn networks as well as existing power-law
networks.

II. SYSTEM MODEL

In this section, we set resiliency metrics, topological graphs
and preferential attachment strategies as system model.

A. Resiliency metrics

Previous studies on network resiliency have used the ratio
of vertex covering nodes as one resiliency metric [5], [6]. Let
v denote the ratio of vertex cover as the primary metric in this
paper, such that
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where |V C| is the cardinality of the minimum vertex cover of
a graph and n is the number of nodes in the graph. v represents
the attack resiliency of network topologies, such as a graph
which has small v can be seriously demolished by attacking
the small number of vertex covering nodes. This metric also
represents the balance of degree distribution.

Since v is a static property of a graph and does not neces-
sarily carry the dynamic property under attack, we propose



another metric based on the connectivity of the remaining
network after the occurrence of an attack. The secondary
metric also represents attack resiliency of a network topology.
The difference between this metric and v is that this metric
shows the subgraph distribution affer attacks. We show

) = Yimini(ng —1)

n(n —1)
where s; is number of subgraphs after ¢ node attacks, n is
number of nodes in a graph and n; is number of nodes in
the jth subgraph after ¢ node attacks. We remark that ¢ varies
from 0 to n in Eq. (2) and 7 is difficult to compare resiliency
between topological graphs with different node size when 4
is a fixed value. K(«) is a normalized function of 7 using «
(0 < a < 1), the ratio of the total node size n. Namely, we
show

@)
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where n;,;; is a constant node size of an initial graph which
is not influenced by node increment. [« - nn;] is an integer
value since this parameter is the number of attacked nodes.
Priority of attacked nodes is decided by the degree of nodes
for maximizing attack influence. K is proportional to the size
of the biggest subgraph by Fig. 3. For example, two subgraphs
of node size 8 and 2 make K higher than two subgraphs of
node size 5 and 5. This metric is significant since graph size
of the majority subgraph represents attack resiliency. K also
represents connectivity of minor subgraphs unlike the metrics
used in [7] and [8]. This property is critical to distinguish the
resiliency of these two subgraph groups: {5, 4} and {5, 2,
2}. Numbers in the brackets are node sizes of subgraphs. It is
obvious that the former subgraph group has better connectivity
than the latter. K distinguishes the connectivity of two groups,
while the metric used in [7] and [8] is same in both groups.

B. Topological graphs

A network topology is given as an undirected graph G =
(V, E), where V is the set of nodes and E is the set of edges
[5]. We use two power-law graphs i.e.AS full connectivity
graph of 1997 and 2006 (will be expressed as AS-1997 and
AS-2006 from now on) for resiliency evaluation of the Internet
[10], [11]. In addition, three 200-node graphs i.e.a ring-shaped
graph, a star-shaped graph and a power-law graph are used to
evaluate how the resiliency metrics change by the shape of a
base graph. We also use a 2-node graph to measure resiliency
of a newly emerging network.

C. Modeling evolving strategies

In many real networks, edges are not created independently
at random, but rather seem to follow some preferential attach-
ment rule [3]. Preferential attachment is modeled by assuming
that the probability that a newly created vertex v is connected
to an existing vertex w is proportional to the degree k., (t) of
w, so that the corresponding probability of attachment is given
by kw/ Y, kr [4]. However, it is known that nonlinear forms
of preferential attachment do not lead to stationary power-
law distribution [3]. We use three basic evolving strategies by
degree-based probability distribution which are:
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Fig. 1. Probability distribution of three evolving strategies.

e Max strategy: A newly generated node has a tendency
to be connected to higher degree nodes. This strategy
follows the power-law 1 in [1], i.e., d, o 7, to expand
a topology.

o Avg strategy: A newly generated node has a tendency
to be connected to average-degree nodes, with higher
probability than to other nodes.

e Min strategy: A newly generated node has a tendency
to be connected to minimum-degree nodes, with higher
probability than to other nodes.

Let Pp.;(d) denote the probability of Max strategy at
degree d such that

Pmaz(d)zfd"rdR' (ij',rjR)_l (4)
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where f; is the frequency of a degree d, r4 is the rank of a
degree d, R is the rank exponent in [1] and j is the number
of different degrees. This probability distribution function has
similar characteristics with the previous topology generator
Inet [9], which also obeys the power-law. Modified rank w
for Avg strategy is expressed as

w=1+ |dgvy — d| 5)

where dg.,4 is the rounded integer of the average degree. Using
Eq. 5, we briefly show that the probability distribution function
of Avg strategy is
-1
Pavg(d)=fd'wdw'(zfj'ij) ©®
J

where W is the modified rank exponent. Finally, the proba-

bility distribution of Min strategy is shown to be

= fq-d- (Zf]

where D is the degree exponent [1]. Fig. 1 shows probabil-
ity distribution of three evolving strategies at the 200-node
subgraph extracted from the AS-2006 graph with exponents
R=-2,W = —-2and D = —1. Max strategy has the highest
probability at the maximum-degree (d = 111) node. Likewise,
Avg strategy has the highest probability at the average-degree
(d = 13) node and Min strategy has the highest probability
at the minimum-degree (d = 1) node. A small peak of Py,

Prrin(d) N )



shown in 1 < d < 3 is due to relatively high frequency of
low-degree nodes.

Fig. 2. A sample graph of network topology

Probability distribution in Fig. 2 for each strategy is calcu-
lated as follows. Let n be the number of nodes that 1 <n < 8.
Degrees of each node are: dy =1, dy = 3, d3 = 2, dy = 2,
ds =2,dg =4, d; =1 and dg = 1. Next step is to calculate
rq, fqg and wq for 1 < d < 4 to use Eqgs. 4, 6 and 7. Calculated
probabilities of three evolving strategies are shown in Table I.

TABLE I
PROBABILITY OF EVOLVING STRATEGIES IN FIG. 2
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16 3 2 0.05 0.1824  0.5902
213 3 1 0.2 0.7297  0.2951
32 1 2 0.15 0.0608  0.0655
41 1 3 0.6 0.0271  0.0492

There are three strategies if dpe,, = 1, Where dpe, is the
degree of newly generated nodes: Max, Avg and Min. Max
strategy is that a newly generated node has probability Py, 4z
to make a connection with existing nodes, which means a new
node tends to be connected with the maximum-degree node
of a graph. Similarly, Avg strategy gives Pg,, and Min gives
Pin to newly generated nodes. In case of dpey = 2, six
strategies can be made by combining the three basic strategies:
Max-Max, Avg-Avg, Min-Min, Max-Avg, Max-Min and Avg-
Min. Max-Min strategy, for example, gives Pp,q, and Ppin
to newly generated nodes; a new node with degree 2 tends
to make connection with one high-degree node and one low-
degree node.

III. EXPERIMENTAL RESULTS

In this section, we take various experiments for measuring
the attack resiliency of growing networks via the evolving
strategies. The simulator is developed for modeling attacks
and network connectivities, which is implemented by the Java
programming language [12]. Each simulation run is performed
on a connected and undirected graph as follows. Given a set
of nodes and edges, a node is added to the graph with dy,¢q
uniform number of edges. Attack targets to the graph are a
set of nodes, which are decided by the degree of nodes. We
set dyeq to 1 in every simulation since that assumption makes
the resiliency of a network worst. Exceptionally, simulations
using dpew = 2 and dpe = 3 are performed in the fourth
subsection, Varying dyeq-

A. Power-law internet

The node size of the Internet topology has been increasing
rapidly; AS-2006 graph has 22035 nodes, while AS-1997
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Fig. 4. K(0.001) vs. increased nodes in AS-1997 graph

graph has 3015 nodes. Resiliency metrics of AS-1997 graph
are v ~ 0.1914 and K (0.001) ~ 0.2827. However, the metrics
have been decreased to v = 0.1451 and K (0.001) ~ 0.1809
in AS-2006 graph. It means that the Internet is getting less
resilient to attacks.

We add 19000 nodes to AS-1997 graph by three evolving
strategies, where new nodes are connected with degree one,
i.e., dney = 1. Using the two resiliency metrics, we measure
the resiliency of evolving networks. Fig. 3 shows how v
changes in three evolving strategies. Max strategy decreases
v, while Avg and Min strategies increase the metric higher
than 0.3. We can see that Min strategy is the best strategy
to increase v. On the other hand, Avg strategy is the best
strategy for metric K, although it cannot increase the metric
higher than the initial value. The decline of K (0.001) in all
three strategies, shown in Fig. 4, is caused by djpey, Which
is always set to 1 for all newly generated nodes. Metrics
difference between AS-2006 graph and Max strategy result is
caused by rank exponent R in Eq. 4. R is -2 in the experiment,
which makes the preference to maximum degree node more
strict than -0.75, previously computed rank exponent in AS
level [9].

B. Regular graphs

In this part, we discuss the impact of a base graph on the
resiliency of evolving networks. We use three graphs with 200
nodes as a base graph: a ring graph, a star graph and a power-
law graph. We add 1200 nodes to each initial graph since we
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septupled the node size of the former experiment for power-
law internets.

The first regular graph used in the experiment is a ring-
shaped graph. In Max strategy, v decreased from 0.5 to 0.1,
while Avg and Min strategies showed relatively low decline
between 0.4 and 0.5 as shown in Fig. 5. All of the strategies
cannot increase ¥ more than the initial value, since an initial
ring-shaped graph is resilient enough to have higher v than the
real internet graph. Therefore we can measure the resiliency of
each strategy by the slope of v decline. The result of K (0.01),
shown in Fig. 6 is similar to v that Max strategy shows lower
value than Avg and Min strategies. It is also shown that K
transition of Avg strategy and Min strategy are almost same
while Min strategy has higher values than Avg strategy in v
transition.

A star-shaped graph, the second regular graph used in the
experiment, has extremely low v and K («) since an attack to
the central node gives critical damage to the entire graph. It
also means the properties of this graph is contrary to a ring-
shaped graph. In the experiment, both initial metrics are close
to zero as shown in in Fig. 7 and Fig. 8. Transition of v is Min
> Avg > Max, which is different from transition of K (0.01):
Avg > Min > Max. v transition in Max strategy in Fig. 5
shows that the metric increases until 200 nodes are added, but
slightly decreases afterwards. Another characteristic in a star-
shaped graph is that the gap of K between Max strategy and
non-Max strategies is not so big as other graphs used in the
experiment.
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The third regular graph is a power-law graph, i.e.a 200-
node subgraph of AS-2006 graph. v of a power-law graph,
shown in Fig. 9, shows the inefficiency of Max strategy in
terms of resiliency. Compared with that Avg and Min strategies
increases v, Max strategy decreases v from 0.2 to 0.1. In
addition, Max strategy brings K (0.01) the worst in Fig. 10
(Avg > Min > Max). We can also see that this subgraph of
the Internet graph has similar properties to the original internet
graph by comparing Fig. 3 and Fig. 9. The difference between
Fig. 4 and Fig. 10 is due to the node number of its initial graph,
which is crucial factor to transit K.

C. Constructing a new network

Unlike the Internet, the topology of a newborn network like
local-area network(LAN) can be optimally designed consid-
ering the attack resiliency. It is also flexible to apply and
modify various strategies to find the optimal evolving strategy
in a newborn network environment. Fig. 11 and Fig. 12
show v and K (0.05) increasing 1200 nodes in the 2-node
graph (dpe = 1). Max strategy makes both v and K worst
of the three strategies. We can see that both Avg and Min
strategies are much more effective than Max strategy for attack
resiliency, though they cannot increase v higher than the initial
value. It is shown that the best strategy for v is Min strategy,
which is uniformly better than Avg strategy.

Like the Internet graph, a star-shaped graph and a power-
law subgraph, Avg strategy is the best strategy for increasing
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K(0.01) as shown in Fig. 12. We can see that Min strategy
is the best strategy to increase v and Avg strategy is the best
to increase K (a) via the former experiment results. It is also
revealed that v converges to uniform scope by strategy after
n-node expansion; Vpyae ~ 0.1, Vayg ~ 0.4 and vy, ~ 0.45.
This means the resiliency is influenced by evolving strategy
more than by the shape of a base graph.

D. Varying d,eq

In this part, we evaluate the resiliency effectiveness of d,eq
in the 2-node graph. We add new nodes to an initial graph
using three different d,,¢,, (1, 2 and 3). In addition we compare
dpneq variation result and strategy variation result to discover
the better method for increasing attack resiliency.

We add 1200 nodes to a 2-node graph using Max strategy.
Max strategy with dpe,, = 2 is that a newly generated node
tends to attach to two distinct high-degree nodes and Max
strategy Wwith dpey = 3 is likewise. Fig. 13 shows that
increasing dje,, does not increase v effectively. Comparing
v ~ 0.15 in Max strategy with dpey, =3 and v ~ 0.4 in Avg
strategy with dy,e, = 1, we can see that choosing non-Max
strategy is more effective to increase v than increasing d,eq-
Choosing non-Max strategy is also more effective to increase
K (o) than increment of dpeq, comparing K(0.01) ~ 0.45
in Max strategy with dye, = 3 and K(0.01) ~ 0.8 in Min
strategy with dy., = 1. However, increasing d,,.,, is effective
to increase K, more than to increase v.
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IV. EVALUATION AND PRACTICAL CONSIDERATION

It is not difficult to apply the best evolving strategy for
attack resiliency to newborn networks or small-sized networks
like LAN. We can see that Min strategy is the most effective
strategy to increase v, and Avg strategy is the best for K ()
via Fig. 11 and 12. In addition, it is obvious that choosing
an appropriate strategy is much more effective than increasing
dnew, comparing Fig. 11 and Fig. 12 with Fig. 13 and Fig. 14
as we mentioned in the previous section.

However, it is difficult to apply the best evolving strategy
for attack resiliency to power-law networks, especially large
networks like the Internet. Practically low-degree nodes on
the Internet have relatively lower bandwidth than high-degree
nodes, which let a newly generated node attach to high-degree
nodes. There are also commercial problems to connect new
nodes with existing nodes. Fig. 15 shows how the resiliency
metrics transit by the ratio of Max strategy and Avg strategy
in 200-node power-law graph with dp., = 1. We take
Avg strategy for the experiment, not Min strategy, since Avg
strategy has higher possibility to have large bandwidth and
attraction to new nodes than Min strategy. If more than 60%
of newly generated nodes on the graph obey Avg strategy,
v can exceed the initial value. Similarly, more than 90% of
newly generated nodes should follow Avg strategy to increase
K (0.001).

We repeat the same experiment varying dye,, from 2 to 4
for decreasing Avg strategy’s ratio. Because, 60% and 90%
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of ASs are enforced to change their evolving strategies for
increasing attack resiliency, which means it is very hard to
be applied to the practical situation. The experimental results
in Fig. 16 shows that increasing d.,, reduces the minimum
ratio of Avg strategy for attack resiliency. 60% of newly
generated nodes should obey Avg strategy to increase both
v and K (0.001) with dpeyy = 2, 47% with dpewy = 3 and
42% with dye = 4. Therefore, both using Avg strategy and
increasing dpe, for newly generated nodes can practically
make power-law networks more resilient to attacks. As shown
in Fig. 16, 20-40% of adapting Avg strategy can be considered
as a practical range of deployment.

V. CONCLUSION AND FUTURE RESEARCH

In this paper we have presented the resiliency metrics and
evolving strategies of network topology. Max strategy, which
obeys power-law, showed the worst attack resiliency in all
experimental environments. Avg strategy is the best strategy
for K(«) and Min strategy for v. Therefore, it is required to
expand nodes by non-max strategies better than Max strategy
for network resiliency. We can also know that transition of
v and K(«) is mostly influenced by evolving strategies, not
by the shape of a base graph. Another finding is that both
using Avg strategy and increasing dne, can increase attack
resiliency of power-law graphs like the Internet under practical
consideration.

Our future research heads to vary the distribution of deq
obeying power-law f; oc d© in [1], since the degree of newly
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generated nodes was fixed in each experiments. Another future
work is considering distances between nodes and bandwidth
for better network performance.
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