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SUMMARY

Software vulnerability has long been considered an important threat to the system safety. A vulnerabil-
ity is often reproduced because of the frequent code reuse by programmers. Security patches are usually
not propagated to all code clones; however, they could be leveraged to discover unknown vulnerabilities.
Static code auditing approaches are frequently proposed to scan source codes for security flaws; unfor-
tunately, these approaches generate too many false positives. While dynamic execution analysis methods
can precisely report vulnerabilities, they are ineffective in path exploration, which limits them to scale to
large programs. With the purpose of detecting vulnerability in a scalable way with more preciseness, in this
paper, we propose a novel mechanism, called software vulnerability discovery using Code Clone Verifica-
tion (CLORIFI), that scalably discovers vulnerabilities in real world programs using code clone verification.
In the beginning, we use a fast and scalable syntax-based way to find code clones in program source codes
based on released security patches. Subsequently, code clones are being verified using concolic testing to
dramatically decrease the false positives. In addition, we mitigate the path explosion problem by backward
sensitive data tracing in concolic execution. Experiments have been conducted with real-world open-source
projects (recent Linux OS distributions and program packages). As a result, we found 7 real vulnerabilities
out of 63 code clones from Ubuntu 14.04 LTS (Canonical, London, UK) and 10 vulnerabilities out of 40
code clones from CentOS 7.0 (The CentOS Project(community contributed)). Furthermore, we confirmed
more code clone vulnerabilities in various versions of programs including Rsyslog (Open Source(Original
author: Rainer Gerhards)), Apache (Apache Software Foundation, Forest Hill, Maryland, USA) and
Firefox (Mozilla Corporation, Mountain View, California, USA). In order to evaluate the effectiveness of
vulnerability verification in a systematic way, we also utilized Juliet Test Suite as measurement objects. The
results show that CLORIFI achieves 98% accuracy with 0 false positives. Copyright © 2015 John Wiley &
Sons, Ltd.
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1. INTRODUCTION

Programmers often make code reuses when they develop software. These code reuses are considered
to be code clones that refer to the same or similar code fragments in source code files. The behavior
of code reuse usually causes the propagation of vulnerabilities when a piece of vulnerable code is
reproduced. We call this kind of vulnerability as code clone vulnerability.

Security patches are released to fix vulnerabilities. However, the patch of a specific vulnerability
often fails to propagate to code clones at other locations or programs, which, very possibly, present
latent code clone vulnerability. Once a security patch is released, attackers could leverage patch
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information to dig out 0-day vulnerabilities and make great damage to the systems. Thus, there is
an urgent need to detect them in an effective and efficient way.

For a long time, software testing has been actively studied to detect security vulnerabilities. Static
code analysis [2–5] is proposed to discover vulnerabilities by analyzing source codes or binary
objects. The large coverage of code and the access to the internal structures make this approach
efficient to find potential warnings of vulnerabilities. However, static analysis approximate or even
ignore runtime conditions, which makes them suffer from high false positives.

Besides from static analysis, research efforts have been spent on dynamic analyzing approaches
as well. Dynamic analysis monitors program execution to discover security flaws [6–8]. These tools
detect software vulnerabilities by monitoring the program run-time behavior and generating test
cases for program inputs. Although dynamic analysis reduces false alarms, it requires the genera-
tion of actual bug-triggering test inputs, which makes it difficult to find critical security flaws in a
reasonable time. What is more, high coverage of the huge input space is either too much expensive
or impractical to achieve.

Symbolic execution [9] has been widely utilized to generate efficient testing inputs by solving
paradigm program constraints of variables. Because of the impractical implementation on real-
world programs, concolic testing (CONCrete + symbOLIC) is proposed to enhance the ability of
symbolic execution. It involves concrete execution while doing symbolic execution so as to address
unsolvable constraints [10–12]. Even though substantial efforts have been made to research about
different searching strategies of concolic testing [13] to improve code coverage, program paths grow
exponentially as the branches in programs increase. Because of this path explosion problem, single
symbolic or concolic execution-based approach is either ineffective in path exploration or do not
scale well to large programs.

In order to gain higher preciseness and better scalability in vulnerability discovery, we propose
a mechanism, called CLORIFI, which takes advantages of both static and dynamic analysis to dis-
cover code clone vulnerability based on released security patches. Different from merely raising
potential warnings of vulnerability in static analysis approaches, CLORIFI performs vulnerability
verification using concolic testing to reduce false positives. What is more, backward data tracing
has been proposed in our mechanism to mitigate the path explosion problem in concolic testing as
well. First of all, we detect code clones in target-source code by doing syntax-based pattern match-
ing in a scalable and efficient way. Second, we analyze the security sensitive data in code clones
and perform backward input tracing to instrument the program source and prepare the testing object
so that we can focus on program inputs that affect the potential vulnerable statement. Finally, code
clones are automatically verified to confirm real vulnerabilities using concolic testing. This verifi-
cation dramatically reduces false positives. In the evaluation, experiments were conducted with real
world open source projects such as recent Linux OS distributions and different versions of Linux
program packages. In the results, we found 7 real vulnerabilities out of 63 code clones from Ubuntu
14.04 LTS and 10 vulnerabilities out of 40 code clones from CentOS 7.0 . During the experiments,
260K source files from Ubuntu 14.04 and 520K files from CentOS 7.0 were processed within 7 and
9.2 hours, respectively. In one step further, we found more code clones and confirmed more vulnera-
bilities in different versions of program packages. Meanwhile, in order to evaluate the effectiveness
of vulnerability verification in a systematic way, we also utilized Juliet Test Suite [14] as measure-
ment objects. The results present that CLORIFI achieves 98% accuracy with 0 false positive and the
average verification speed is 0.24 s.

Our contributions are summarized as follows:

� Combination of static and dynamic analysis to reduce false positive. We have developed a
novel mechanism called CLORIFI, which combines the advantage of static and dynamic analy-
sis to detect code clone vulnerability. Our mechanism suggests that the code clone vulnerability
detection is scalable and with low false positives.
� Backward sensitive data tracing to mitigate the path explosion problem. The backward

sensitive-data tracing enables our approach perform concolic testing to do verification in a way
that mitigates the path explosion problem in conventional concolic execution approaches.
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The remainder of this paper is displayed as follows. Section 2 introduces related works and a
broad description of our work. We discuss our approach in detail in Section 3. Experimental results
and evaluation are presented in Section 4, and we conclude the paper in Section 5.

2. RELATED WORK

Software vulnerability detection approaches mainly fall into three categories: static analysis,
dynamic analysis and symbolic (concolic) execution.

2.1. Static analysis

Previous researchers have proposed different approaches for static source code auditing. Some of
static analysis approaches focus on detecting code clones [15–17]. Deckard [16] and Deja vu [15]
first parse the program to produce an abstract syntax tree(AST) to represent the source program and
then use the vector as a fingerprint for ASTs. Similarity comparison is performed among finger-
printing vectors. These approaches require a very robust parser for the programming language, and
they are not efficient and scalable enough in real large source-code pools according to Redebug [18].
Even though it can handle subtle code changes that may help them to find more code clones, this
approach suffers from high false positive rate.

Redebug [18] tokenizes the source code into n-tokens and uses feature hash function to hash n-
tokens. The code clone detection is performed by membership checking in bloom filter that stores
the hash value of n-tokens. It is very practical and can scale very well in real-world usage in terms
of code clone detection. However, because of a lack of automatic verification mechanism, most of
un-patched code clones they reported are turned out not to be real vulnerabilities that gives them a
super-high false positive rate in terms of vulnerability detection.

2.2. Dynamic analysis

Dynamic analysis checks program runtime-execution behaviors to detect security vulnerabilities.
Purify [19] feeds the input data to a program and examines the execution information at runtime.
A security flaw is reported when any abnormal behavior in the execution is detected. Hastings [20]
proposed an approach to fuzz the program with large amount of input data considering the target
program as a black box. Assumptions are defined and settled up into the program to monitor if
any input data drives the program to a state that violates these assumptions. Even though dynamic
analysis reduces false positives, exact concrete inputs are required to actually cause the security
problems in the program. This places programmers a huge burden for testing.

2.3. Symbolic and concolic execution

Based on the shortness of the aforementioned discussion, we are looking into an automatic and effi-
cient way to do vulnerability verification. Symbolic execution was proposed to do program testing
and showed good performance in detecting some vulnerabilities [21]. Concolic testing [10, 12] was
proposed later to improve symbolic execution in order to make it more practical in real world pro-
grams. KLEE [10] was developed to automatically generate high-coverage test cases and to discover
deep bugs and security vulnerabilities in a variety of complex code. CREST-BV [12] has shown a
better performance than KLEE in branch coverage and the speed of test case generation. Nonethe-
less, the branch coverage rate of CREST-BV was still below 25% with baseline testing strategy and
below 70% with the special designed testing strategy [12], which means, for some vulnerabilities, it
is either impossible or too much time consuming to report them out.

The CREST [13] is a concolic test-generation tool for programs written in C. It has been widely
used either as a basic concolic-testing engine or a benchmark program in previous works [12, 22,
23]. Seo et al. [22] introduced a context-guided searching strategy (CGS) in concolic testing that
skips the selection of some branches with the same context information. CGS is also constructed
based on CREST, and it improved the efficiency of concolic testing, given a certain goal of branch
coverage and showed a relatively higher code coverage than conventional searching strategies such
as depth-first searching (DFS) and control-flow graph-based searching (CFG) [13]. Li et al. [24]
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presented a method that drives symbolic execution to less traversed paths. However, they used fixed
size of subpath that will make them miss some critical paths. Hybrid concolic testing [25] combines
random input testing and concolic testing. It switches to concolic testing when random execution
reaches a deep state of program and lingers at a certain coverage plateau. These approaches suffer
from path explosion problem when they are trying to generate inputs to cover every branch of
the program. Moreover, when detecting software bugs or vulnerabilities, they usually take every
normal statement(such as memory copy, buffer access, and arithmetic operations) as a potential bug.
This makes the concolic testing very time-wasting and resource-wasting because of a huge input
searching space, because only very small portion of the potential bugs turn out to be real security
vulnerabilities in real-world programs.

However, CLORIFI focuses on the program input that affects the potential vulnerable spot using
backward sensitive data tracing in order to drive the execution to reach to a specific vulnerable
branch instead of covering all program branches. In our mechanism, we do vulnerability verification
using concolic testing after a scalable process of code clone detection, which reduces false positives.
We also propose backward data tracing in CLORIFI to assist concolic testing so as to mitigate the
path explosion problem.

3. THE MECHANISM: CLORIFI

Discovery of vulnerabilities is crucial to maintain secure systems. Security patches are released to
fix security flaws and vulnerabilities. However, not all the patches are well adopted and applied
in all related programs. In a common case, released security patches are often not propagated to
all vulnerable programs due to the heavy usage of the same piece of vulnerable code. To make
things worse, attackers often find more critical vulnerabilities based on the information learned from
released security patches. As security researchers, we had better move ahead of attackers to identify
those vulnerabilities related to un-patched code clones. We call these vulnerabilities as code clone
vulnerability. In this section, we explain CLORIFI: a mechanism that scalably discovers software
vulnerability using code clone verification.

Before going into detail of CLORIFI, its general process is illustrated in Figure 1. First, we
find code clones by doing static syntax-based pattern matching in a scalable and efficient way.
Subsequently, we perform backward data tracing to prepare testing object. At last, we verify the
code clones to report real code clone vulnerability using concolic testing in a way that mitigates the
path explosion problem in conventional concolic testing domain. The automatic verification helps
us dramatically reduce false alarms in terms of vulnerability detection.

3.1. Finding code clones

Code clones are described as follows: if a same piece of vulnerable code occurs in any other loca-
tions or programs, we call them as un-patched code clones. Figure 2 shows the concept and possible
scenarios of code clones(e.g., CC@SP@S means code clone vulnerability at same program, at same
location). In Figure 3, we could see that in some cases, after patch release, the vulnerability may
not be patched until several versions later or the same vulnerability reoccurs in the later program
versions. This, if leveraged by attackers, may cause serious damages to our systems.

Figure 1. General overview of CLORIFI.

Copyright © 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2015)
DOI: 10.1002/cpe



CLORIFI: SOFTWARE VULNERABILITY DISCOVERY USING CODE CLONE VERIFICATION

Figure 2. Possible scenarios of code clone vulnerability.

Figure 3. Code clone vulnerability in the same program but different versions.

In order to find accurate code clones in an efficient and scalable way, we first make our detection
engine scale well to large-code bases such as OS distributions. Second, we report accurate code
clones with minimum false positives. By doing this way, we will find more precise code clones that
will greatly help us to identify real code clone vulnerability later. The main steps of our code clone
detection phase are described as follows.

(1) Normalization of each file. We do source code normalization by removing all non-ASCII
character, redundant whitespaces, converting all characters to lower cases and braces.

(2) Tokenization of each file. After normalization, each file is tokenized by each line. We define
each line as one ‘t’ (token).

(3) N-tokens. We slide a window of n length over the tokenized file. Each n-tokens are considered
a basic unit to compare. We define this basic unit as u. Figure 4 shows a four-token window
sliding. Hence, a file f(t1; t2; t3; : : : ; tl ) is represented as f(u1; u2; u3; : : : ; ux), where x D
l � nC 1 (l is the number of lines in a certain file).
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Figure 4. Window sliding of four tokens.

(4) Checking definition for code clones. We extract the original buggy code snippet from a
security patch basically by removing lines prefixed by ‘+’ and adding lines prefixed by ‘-’.
Then, this original piece of buggy code is regarded as a single file called fv . A code clone
is reported when fv is contained in any file f from target source code pool. Then, how can
we define this containment? From the aforementioned steps, an n-token set for each file has
been obtained, and we define this n-token set for each file as S ={u1; u2; u3; : : : ; ux}. The
n-token set for the buggy code file (fv) is defined as Sv ={u1; u2; u3; : : : ; ux0}. So we define
the containment as fv is contained in f if Sv � S .

(5) Fast membership checking. Because, in practice, there are tons of files that we need to deal
with. So, to do membership checking in an extremely fast way is really necessary. Bloom
filter [26, 27] is well known as fast membership checking that could be a very good choice
to perform our task. Suppose there is a data set S, e.g., a set of n-tokens. A bloom filter
represents set S as a vector of m bits initially all set to 0. To store data into the bloom filter
(add an element x of S to the Bloom filter), We first apply k-independent hash functions
with the value range of [1, m] on the n-tokens for files in source-code pool, in our case,
Hash.u1/;Hash.u2/; : : : ;Hash.ux/. For each hash h.x/ D i , we set the i-th bit of the bit
vector to 1. To check the membership in a bloom filter, we again apply k-independent hash
functions on the target n-tokens data set. In our scenario, similarly, we apply k hash functions
on n-tokens from fv . Then, we check if all the corresponding bits are set to 1. If at least one
of the hashed bits is 0, then we return a non-existence result.

3.2. Preparing testing source object

In order to reduce the input search space of the whole program, we propose backward sensitive-data
tracing to make a testing source object. The preparing of source object is a preprocess for our con-
colic testing. It is performed by backward source-code analysis and program source instrumentation.

3.2.1. Backward sensitive-data tracing. Backward sensitive data tracing is used to perform an effi-
cient static data-flow analysis backwardly to trace the sensitive data from the potential vulnerable
statements back to the corresponding inputs. By doing so, we can focus on program inputs related
to vulnerable statements only while leaving un-related inputs aside to reduce the whole input search
space of the program. Before we explain how to perform backward sensitive data tracing in detail,
important definitions of Security Sinks, Sources, Sensitive data, Program Constraints and Security
Constraints, are presented as follows.

Security sinks : Sinks are meant to be the points in the flow where data depending from sources
is used in a potentially dangerous way. Typical security-sensitive functions and memory access
operations are examples of security sinks. Several typical types of security sinks are shown in
the succeeding paragraphs.

� Memory copy: The sensitive data is used as an argument to be copied in a destination buffer
(e.g., strcpy, memcpy). When destination buffer cannot hold the sensitive data, serious
security problems may occur like buffer overflow.

Copyright © 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2015)
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Table I. Security requirements for security-sensitive functions.

Security-critical func. Security requirement

strcpy(dst,src) dst.space > src.strlen
strncpy(dst,src,n) (dst.space > n) ^ (n > 0)
strcat(dst,src) dst.space > dst.strln + src.strlen
getcwd(buf,size) (buf.space > size) ^ (size > 0)
fgets(buf,size,f) (buf.space > size) ^ (size > 0)
scanf(format, ...) # formats = # parameters-1
printf(format, ...) # formats = # parameters-1

� Memory allocation: The sensitive data is used as an argument in memory allocation
functions (e.g., malloc, alloca), and it usually causes insufficient memory allocation.
� Format string: The sensitive data is used improperly as argument in format functions (e.g.,

printf, sprintf ). Attacker can take use of this vulnerability to take control of a system.
� Arithmetic operations: The arithmetic operations may cause integer overflow, underflow,

or divided by zero problems.

Sources : Sources are starting points where un-trusted input data is taken by a program.

Sensitive data : Sensitive data are considered to be data depending on Sources that are used in
the security sinks.

Program Constraints (PC) and Security Constraints (SC) : Program constraints are pro-
gramming paradigm wherein relations between variables are stated in the form of constraints.
Program constrains are generated by following a specific branch according to conditional state-
ments in the program. Program inputs, which satisfy a set of program constraints, drive the
program to execute a specific program path. Security constraints are clearly high-level security
requirements. For example, the length of the string copied to a buffer must not exceed the capac-
ity of the buffer. We need to define security requirements for statements like security-sensitive
function parameters, memory access, and integer arithmetic. Table I shows our predefined secu-
rity constraints for security-sensitive functions. When there are inputs that satisfy program
constrains but violates security constrains(PC ^ SC ) at a certain point during the execution,
the program is considered to be vulnerable.

Now, we discuss the detail process of backward sensitive-data tracing. First, security sinks and
sensitive data are identified in the code clone. Then, we backwardly trace the source from the sen-
sitive data to find the related input location. In order to perform an efficient backward tracing,
we propose code structure graph (CSG) to store the information of source code and a recursive
algorithm to do backward sensitive data tracing.

Code structure graph is a graph representing the structure of code blocks in the program source.
CSG is constructed based on each function and the code blocks are identified by the pair of
braces(‘¹’,‘º’). Figure 5(a) gives us basic code blocks from a sample code, and Figure 5(b) shows
the corresponding code structure graph.

Code structure graph stores the code structure relationship and code execution sequence informa-
tion among each statement and serves as an input for our recursive tracing algorithm that makes our
tracing more convenient. Figure 6(a) shows the backward tracing scenario in the sample code and
the algorithm is depicted in figure 6(b). In the algorithm, we take V (initial sensitive variable) and
G (CSG) as inputs. Starting from the initial sensitive variable, the algorithm is designed to find the
its ancestor by invoking ancestor tracing function (line 2) recursively. When the current ancestor
becomes the source, the recursive algorithm exits and outputs the source statement. In our defini-
tion, a variable’s ancestor is the code statement where the variable’s value is being assigned. The
ancestor statement of a certain variable v0 could be one of the following four cases:

� v0 D expression.v1/I statement where variable assigned by expression
� v0 D f .m; n; : : :/I statement where variable assigned by function return value
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Figure 5. An example of code structure graph.

Figure 6. An example of code structure graph(CSG).

� f .v0/I statement where variable assigned inside a function call
� void f .char v0/I function declaration statement

The algorithm tries to trace the ancestor statement by backward traversing the code structure graph
(line 14) according the different cases earlier (line16). The algorithm finally helps us to find the
source(the program original input statement) related to the sensitive data.

3.2.2. Program source instrumentation. To instrument the program source, we make assertions
based on security requirements right before the security sink and replace the input statement with
symbolic values. We can see this process from Figure 7.

Until now, we could prepare a testing source object logically from the program input to the poten-
tial vulnerable sinks. This testing source object is usually a small part of the whole program source
that helps us to release the burden of our next stage.
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Figure 7. Instrumentation of program source.

3.3. Code clone verification using concolic testing

Symbolic execution and concolic execution have been widely used in software testing and some
have shown good practical impact, such as KLEE [10], Concolic Unit Testing Engine (CUTE) [6]
and Directed Automated Random Testing (DART) [28]. However, they suffer from path explosion
problem that makes them cannot scale well to large real-world programs. H. Li et al. [29] has
proposed variable backward slicing to analyze a program. This approach helps us to concentrate on
those paths only related to sensitive sinks that dramatically reduce the number of paths to analyze.
However, pure-static symbolic execution does not give us enough support on real-world programs.
Driven by the aforementioned concerns, we apply concolic testing in our mechanism to verify the
code clones. The general principle of the verification is to find inputs which satisfy all the program
constraints (PCs) but violate the security constraints (SCs) as shown in Figure 1. The concepts of
PC and SC are addressed in [29]. In our scenario, we focus on the paths related to code clones
rather than the countless number of paths in the whole program, which helps us to mitigate the
path explosion problem to a large extent. We also focus on the program inputs that are related to
the sensitive data in the security sinks instead of the whole program input space. Our approach
for concolic testing to verify code clones mainly follows a general concolic testing procedure [12].
However, the difference is that we focus on generating an input to execute the vulnerable branch
instead of trying to generate inputs to traverse every possible paths of the program. Our approach
for concolic testing is target branch-oriented rather than branch coverage-oriented. Hence, we are
more time cost efficient when doing concolic testing. The detailed process is described as follows.

(1) Declaration of symbolic variables. Initially, a user must specify which variables should be
handled as symbolic variables, based on which symbolic path formulas are constructed. This
is performed by backward sensitive-data tracing in the second stage of CLORIFI.

(2) Program instrumentation. The target program source is instrumented with probes that record
the symbolic branch conditions. For instance, a probe is inserted to record the branch
condition. Then, the instrumented source program will be complied into an executable binary.

(3) Concrete execution. The instrumented binary is executed with given input values. For the
first execution, initial input values are assigned randomly. From the second execution, input
values are obtained from Step 6.

(4) Obtain a symbolic path formula. The symbolic execution part of the concolic execution
collects symbolic path conditions over the symbolic input values at each branch point
encountered for along the concrete execution path for a test case tci .

(5) Generate a new symbolic path formula. When a target program terminates, to obtain the next
input values, a new symbolic path formula is generated by negating one path condition cj
and removing subsequent path conditions of current one (i.e., c1

T
c2
T
:::
T
cj ).
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Figure 8. The architecture of CLORIFI.

(6) Select the next input values tciC1. A constraint solver such as a Satisfiability Modulo Theory
(SMT) solver [30] generates a model that satisfies a symbolic path formula. This model deter-
mines the next concrete input values to try (i.e., tciC1), and the concolic testing procedure
iterates from Step 3 using these input values.

(7) Iteration stop criteria. When there is at least one test case which trigger the assertion at
the code clone (violate the assertion), then this code clone is proved to be real code clone
vulnerability. The iteration stops once the code clone is being successfully verified. The
iteration stop criteria is:

� Execution stops when there is one triggering test case generated (vulnerable);
� Execution stops when a certain time threshold t has been reached; however, no triggering

test case is generated(not vulnerable);

In Figure 8, we can see the detail architecture of CLORIFI, which consists of three phases: Code
clone detection, Preparation of testing source object and Vulnerability verification. This mech-
anism is used to discover un-patched code clone vulnerabilities in real-world projects. We choose
CREST-BV [15] as a basic concolic execution engine because of its good performance in test case
generation speed.

4. EXPERIMENTAL RESULTS

To evaluate the effectiveness of CLORIFI, we applied real world open source projects as different
target source pools including popular Linux OS distributions such us Ubuntu 14.04 (recent release)
and CentOS 7.0 (latest release) and various versions of program packages such as Rsyslog, Apache,
Firefox and etc. Test cases from Juliet Test Suite [14] are also selected as evaluation objects. In this
section, experiment environment is firstly described, followed by the experimental results.

4.1. Implementation

Environment setup : We performed all experiments to discover code clone vulnerabilities on a
desktop machine running Linux ubuntu 12.04 LTS (3.2 GHz Intel Core i7 CPU, 8 GB memory,
512 GB hard drive). We also setup some basic parameters for the code clone detection and concolic

Copyright © 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2015)
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Table II. Yearly distribution of collected CVE patches.

CVE patches 2010 2011 2012 2013 2014

Buffer overflow 2 1 5 8 7
Integer overflow 1 1 2 0 7
Buffer cased by IOS 0 0 3 2 2
Other 0 1 0 0 1

Total 43

Table III. Detection results.

# of Execution time # of real # of # of FN
Target CVE patches Target src pool # of files CC (CC part) vuln. FP (Veri. part)

SP1
CVE PP Ubuntu 14.04 259,346 63 24,812.5 s 7 0 2 (3.2%)

(2010–2014) OS distribution (7 h)

SP2 CVE PP CentOS 7.0 520,549 40 33,146.5 s 10 0 2 (5%)
(2010–2014) OS distribution (9.2 h)

SP3 CVE PP Httpd-2.2.23 5020 8 474.2 s 8 0 0
(2010–2014) to 2.4.6 (7.9 min)

SP4 CVE PP Rsyslog-5.8.13 1692 7 274.7 s 7 0 0
(2010–2014) to 8.2.1 (4.57 min)

SP5 CVE PP Firefox-23.0 156,620 6 8902.2 sec 6 0 0
(2010–2014) to 31.0 (148.4 min)

SP6 CVE PP Cpio-2.6 937 14 32.1 s 5 0 0
(2010–2014) to 2.10 (0.53 min)

Note: PP = patch pool; CC= code clone(s); vuln.= vulnerability; veri. part = verification part

verification. For the code clone detection, we set the length n over the tokenized file(n-tokens) to
be 4, and we use three fast hash functions: CRC variant, PJW hash and BUZ hash [31]. In the
implementation of concolic testing verification, we set the testing time-budget threshold t to be
5 min, which means a vulnerability is reported only if it has been successfully verified in t.

Dataset : For the security patches, we collected 135 security patches from 43 CVE [32] patch files
(e.g., CVE-2010-0405.patch) related to Linux programs released from 2010 to 2014. We mainly
collected patches related to buffer overflows and integer overflows because these are most common
types of vulnerabilities. Table II shows the number of CVE patch files we collected on yearly base.

For the target testing programs, we collected the source of Linux Ubuntu 14.04 Operating System
(OS) distribution to test our mechanism. In one step further, we collected various versions of linux
packages to find more vulnerabilities from different program versions. Moreover, in order to prove
the efficiency of vulnerability verification of CLORIFI, we collected 100 test cases from Juliet Test
Suite. The Suite is created by US National Security Agency (NSA), and it has been widely used to
test the effectiveness of vulnerability detection tools.

4.2. Experimental results

4.2.1. Detection results of different source pools. We have conducted our experiments with
different target source pools (SP1 to SP6).

SP1 and SP2. Linux Ubuntu 14.04 (recent version) OS distribution and CentOS7.0.1406 (latest
version) OS distribution

We found over 63 code clones in Linux Ubuntu 14.04 and 40 code clones in Linux CentOS 7.
Table III shows the detection results including the number of files processed, the execution time,
false positives and false negatives. The processing time of code clone detection for Ubuntu and Cen-
tOS distributions is nearly 7 and 9.2 hours, respectively, which means this process can be conducted
in daily base. Because the verification part (backward tracing assisted concolic testing) still involves
intermediate manual processes such as program instrumentation and preparing testing object and
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Table IV. Code clone vulnerabilities reported from SP1.

Verification
Program CVE patch Location of vulnerability time

Cmake-2.8.12.2 CVE-2010-0405.patch /Utilities/cmbzip2/decompress.c:381 25.6 s
Firefox-28.0+build2 CVE-2010-0405.patch /modules/libbz2/src/decompress.c:381 30.5 s
Thunderbird-24.4.0+build1 CVE-2010-0405.patch /mozilla/modules/src/decompress.c:381 31.2 s
rsyslog-7.4.4 CVE-2011-3200.patch /plugins/pmrfc3164sd/pmrfc3164sd.c:272 1.2 s
gegl-0.2.0 CVE-2012-4433.patch /operations/external/ppm-load.c:87 9.8 s
linux-3.13(Linux kernel) CVE-2014-2581.patch /net/ipv4/ping.c:250 11.5 s
httpd-2.4.7(Apache) CVE-2011-3368.patch /server/protocol.c:625 20.5 s

Table V. Code clone vulnerabilities reported from SP2.

Verification
Program CVE patch Location of vulnerability time

Cmake-2.8.11 CVE-2010-0405.patch /Utilities/cmbzip2/decompress.c:381 25.6 s
firefox-24.5.0esr.source CVE-2010-0405.patch /modules/libbz2/src/decompress.c:381 30.5 s
rsyslog-7.4.7 CVE-2011-3200.patch /plugins/pmrfc3164sd/pmrfc3164sd.c:272 1.2 s
httpd-2.4.7(Apache) CVE-2011-3368.patch /server/protocol.c:625 20.5 s
ghostscript-9.07 CVE-2013-4276.patch /lcms/samples/icctrans.c:651 25.6 s
glibc-2.17-2-gc4ccff1 CVE-2013-4458.patch /sysdeps/posix/getaddrinfo.c:199 13.4 s
poppler-0.22.5 CVE-2013-4473.patch /utils/pdfseparate.cc:69 15.3 s
openssl-1.0.1e CVE-2014-0160.patch /ssl/d1_both.c:1474 18.1 s
cpio-2.11 CVE-2014-9112.patch /src/copyin.c:141 5.6 s
php5.5.9 CVE-2014-4049.patch /ext/standard/dns.c:520 22.9 s

besides, the verification for each program is a completely independent process, so we measured the
verification time for each program, respectively. The results are shown in Table IV and Table V. We
get an average verification time of 18.6 s among seven programs from SP1 and an average verifica-
tion time of 17.9 s among 10 programs from SP2. The fast verification benefits from our backward
tracing assisted concolic testing that is further explained in section 4.2.2. From the results, though,
the code clone detection part takes the majority overhead of overall execution process, because it is a
pure batch processing procedure, we could use parallel and distributed computing frameworks such
as MapReduce [33] to reduce the overhead to a great extent when adequate computing resource is
available. This provides us a good insight for future research.

We reported 7 real-world vulnerabilities out of 63 code clones in Ubuntu 14.04 and 10 vulner-
abilities out of 40 code clones from CentOS 7. Table IV and Table V show the results of the real
vulnerabilities that we verified. As shown in Table III, CLORIFI reported zero false positives in
all six source pools. In terms of false negatives, CLORIFI reported two False Negatives (FNs) in
SP1 with the FN rate of 3.2% and two FNs in SP2 with the rate of 5%. For SP3 to SP6, no false
negative was reported. We have looked into the false negative cases and found out that the limita-
tion of constraint solver [30] in the concolic-testing engine caused these negatives. Yet, this topic is
out of scope of this research. In the experiments, the false negatives were measured for code clone
verification part only. The reasons why we did not measure false negatives for overall process of
vulnerability detection are two fold. First, CLORIFI reports code clones based on the collected CVE
patches. Because of resource limitation, collecting CVE patches for all kinds of vulnerabilities is
not practical. So, we may miss vulnerabilities because of the limitation of patch collection. Second,
for real-world source code base such as recent Ubuntu distributions, the ground truth of existences
of real vulnerabilities is not available. So, measuring false negatives for vulnerability detection in
general becomes infeasible. Nevertheless, CLORIFI’s automatic verification states a huge improve-
ment over other code clone-detection approaches [15, 16, 18]. To make it more convincing, we also
measured the accuracy of CLORIFI on Juliet Test Suite [14], which is explained in section 4.3.
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Table VI. Code clone vulnerabilities reported from SP3 (Apache).

# of # of # of
reported vulnerability false

Version Release date # LOC code clones found/verified positives

Httpd-2.3.6 6/17/2010 209,369 1 1 0
Httpd-2.3.8 8/31/2010 210,564 1 1 0
Httpd-2.3.11-beta 3/7/2011 219,427 1 1 0
Httpd-2.3.15-beta 11/15/2011 226,497 0 0 0
Httpd-2.4.1 2/17/2012 223,050 1 1 0
Httpd-2.4.2 4/17/2012 223,265 1 1 0
Httpd-2.4.3 8/18/2012 223,921 1 1 0
Httpd-2.4.4 2/25/2013 226,000 1 1 0
Httpd-2.4.6 6/22/2013 233,330 1 1 0

Figure 9. Code clone vulnerability results from different program versions.

SP3, SP4, SP5 and SP6. Different program versions(Apache, Rsyslog, Firefox, and Cpio).
Based on the result of the previous experiment, we looked into different versions of the affected

programs to see code clone vulnerability in different program versions. We collected different ver-
sions(released after the publication time of the security patch) of Rsyslog, Apache, Firefox, and
Cpio. We used them as target source code pool 3 and 6, respectively. For the Apache case, we col-
lected 11 different versions from 2.3.6 to 2.4.6. CLORIFI processed 5020 source files (3,642,170
code of lines) in nearly 7.9~min. As a result, we have found eight code clones and confirmed all of
the eight code clones to be vulnerable. We can see the detail from Table III and Table VI.

These code clones are detected from CVE-2011-3368.patch. From the result, we can see that
after the release time of the CVE-2011-3368.patch, the Apache2 developers did not actually fix the
vulnerability in the later release versions. For some reason, it was fixed in Httpd-2.3.15-beta, and
then, the same vulnerability occurred again in the later release versions. This case corresponds to
the code clone type–CC@SP@S as aforementioned in 3.1. Figure 9 shows the illustration.

Similarly, we also collected different versions of Rsyslog and reported 7 affected versions.
Table III and Table VII show the results.

Our mechanism processed totally 1692 source files (656,708 code of lines) in nearly 4.57~min.
These reported code clones are related to CVE-2011-3200.patch. After the release time of this
security patch, the developing team fixed this vulnerability originally in the source file /syslogd.c.
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Table VII. Code clone vulnerabilities reported with SP4 (Rsyslog).

# of # of # of
reported vulnerability false

Version Release date # LOC code clones found/verified positives

Rsyslog-5.8.13 8/22/2012 78,937 1 1 0
Rsyslog-5.10.0 8/23/2012 78,259 1 1 0
Rsyslog-5.10.1 10/17/2012 77,811 1 1 0
Rsyslog-6.6.0 10/22/2012 92,448 1 1 0
Rsyslog-7.4.0 6/6/2012 105,324 1 1 0
Rsyslog-7.6.3 3/27/2013 111,218 1 1 0
Rsyslog-8.2.1 4/17/2014 112,711 1 1 0

Figure 10. Code clone vulnerability from Rsyslog.

Table VIII. Code clone vulnerabilities reported with SP5 (Firefox).

# of # of # of
reported vulnerability false

Version Release date # LOC code clones found/verified positives

Firefox-23.0 8/6/2013 6,573,727 1 1 0
Firefox-24.0 9/17/2013 6,553,867 1 1 0
Firefox-26.0 12/10/2013 6,763,266 1 1 0
Firefox-28.0 3/18/2014 7,067,994 1 1 0
Firefox-29.0 4/29/2014 7,130,674 1 1 0
Firefox-31.0 7/22/2014 7,327,628 1 1 0

However, from the version Rsyslog-5.8.13, this code clone vulnerability re-occurred in another file
/pmrfc3164sd.c because of the careless code re-use by developers. This case corresponds to the code
clone type–CC@SP@D(see 3.1) and Figure 9 shows the illustration. We can also see the code clone
vulnerability in Rsyslog-7.4.0 in Figure 10.

For source pool 5 and 6, we collected different versions of Firefox and Cpio and reported 6
affected versions in Firefox and 5 versions in Cpio. Results are in Table VIII and Table IX.

The reported code clones from Firefox packages are related to CVE-2010-0405.patch. The vul-
nerability related to this patch was originally reported from the source code in bzip2. However,
even after the release of the security patch, the Firefox packages still reuse the source code of
bzip2 without being patched which introduces integer overflow vulnerability in Firefox. This case
corresponds to the code clone type–CC@De@D (3.1). The illustration is presented in Figure 9.

The last source pool is Cpio, which is a program to manage archives of files. We have reported five
different affected versions in this source pool, all of which are suffering from an integer overflow
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induced buffer overflow vulnerability. The attackers might make use of this vulnerability to crash
the program or execute shellcode. Figure 11 shows the code clone vulnerability in Cpio-2.10 . The
code clone vulnerability discovery illustration of different program versions is shown in Figure 9.

4.2.2. Comparison with conventional concolic testing. As we mentioned before, we apply back-
ward sensitive data tracing to assist concolic testing for our verification. We have compared our
approach with CREST [13]. Even though, recent works, for example, CGS [22], claim their effi-
ciency improvement of concolic testing, they are targeting on the efficiency of covering overall
program branches. However, we are aiming at generating an input that could trigger a certain vul-
nerability. That means, our goal is to generate an input that drives the execution to a specific branch
(buggy branch). In this sense, those techniques including CGS have not been proved superior than
other techniques. What is more, CREST has been widely used either as a basic concolic-testing

Table IX. Code clone vulnerabilities reported with SP6 (Cpio).

# of # of # of
reported vulnerability false

Version Release date # LOC code clones found/verified positives

Cpio-2.6 12/20/2004 22,248 2 1 0
Cpio-2.7 10/21/2006 41,074 3 1 0
Cpio-2.8 6/8/2007 45,154 3 1 0
Cpio-2.9 6/28/2007 46,088 3 1 0
Cpio-2.10 6/20/2009 54,120 3 1 0

Figure 11. Code clone vulnerability from Cpio.

Figure 12. The comparison with conventional concolic testing.
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engine or a benchmark program in many previous works such as [12, 22] and [23]. So we chose
CREST for our comparison experiments.

We have used two programs, Rsyslog-7.4.0 and Cpio-2.10, for testing targets. Both approaches
have generated triggering inputs and successfully verified these vulnerabilities(e.g., CVE-2011-
3200, Figure 6). However, Figure 8 shows a performance comparison in terms of number of
branches covered and number functions reached when the triggering input has been generated.

As we can see, for the program Rsyslog-7.4.0 in Figure 12(a), in order to generate a triggering
input for the vulnerability, CLORIFI has reduced the number of covered branches from 344 to 59 and
has reduced the number of reached functions from 48 to 9. What is more, our approach only spent
1.2 s to trigger this vulnerability, while CREST took 24~min. In Figure 12(b), CLORIFI has made
the number of covered branches and the number of reached functions 78 and 15, respectively, when
the vulnerability from Cpio-2.10 being triggered; however, these two measurement values were as
high as 365 and 78 when the conventional concolic testing approach is applied. This indicates that,
with backward data tracing, we can dramatically reduce the number of paths to traverse and decrease
the input searching space that mitigates the path explosion problem.

4.3. Evaluations of vulnerability verification phase

In order to prove the effectiveness of the vulnerability verification of CLORIFI, we collected 100
test cases from Juliet Test Suite. For every test case, there are ‘good’ functions and ‘bad’ functions
that provide the ground truth for our evaluation. As shown in Table X, the 100 test cases consist of
different vulnerable types, and there are totally 250 spots to verify (100 bad functions and 150 good
functions). We can see the results from Table XI.

As we can see, CLORIFI generates no false positive and five false negatives. The precision
is TP

TPCFP
D 100% and the recall is TP

TPCFN
D 95%. It achieves the verification accuracy of

98%
�

TPCTN
TPCFPCTNCFN

�
. We also measured the average verification time needed to verify each test

case. The average verification time is 0.24 s. This proves that our mechanism has good verification
accuracy, and it is time cost effective.

4.4. Threats to validity

Several threats to the validity of our experiments are discussed as follows.

� The CVE patch files may not be representative and universal. In our experiment, we have
collected 135 security patches from 43 CVE patch files as our CVE patch pool. Most of them
are overflow cases. This makes us might miss out some none overflow type of vulnerabilities,
such as null pointer deference and format strings. What is more, some CVE patches make
changes in the header files of the source code where we cannot get enough information to
identify security thinks, and some vulnerabilities are caused by a number of patches in different
locations in source code that also make us hard to verify them.

Table X. Distribution of test cases.

Number of
Vulnerability type test cases

Stack-based buffer overflow 25
Heap-based buffer overflow 25
Integer overflow 25
Format string 25

Table XI. Evaluation metrics of
CLORIFI on Juliet Test Suite.

True False

Positive 95 0
Negative 150 5
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� The target programs for evaluation of concolic testing efficiency might not be represen-
tative. In order to improve the efficiency of conventional concolic testing, we have proposed
backward sensitive data tracing to assist the concolic testing for vulnerability verification. We
have used Rsyslog-7.4.0 and Cpio-2.10 to perform our evaluation. Even though, these pro-
grams are very popular in current Linux operation systems, they might not be representatives
of all other programs. Actually, because of the limitations of constraint solver [30] in concolic
testing, some vulnerability cases cannot be verified when the constraints are not supported by
the current concolic-testing engine. More precise and effective constraint solving techniques in
concolic testing may help us yield different results.

5. CONCLUSION

In this paper, we develop a novel mechanism called CLORIFI, which combines the advantage of
static and dynamic analysis to detect code clone vulnerability using code clone verification. The
automatic verification of CLORIFI helps us to dramatically reduce the false positives when discov-
ering vulnerabilities. What is more, by tracing the input from the sensitive data in code clones and
preparing the testing source object, CLORIFI performs concolic testing to do verification in a way
that mitigates the path explosion problem. We conducted several experiments with different target
source pools of popular open source projects. The results show that CLORIFI can find real-world
vulnerabilities with extremely low false positive within reasonable time.

However, there are several concerns as well. First of all, some CVE patches patch the vulnerable
code in header files whose information is not enough to identify sensitive sinks. Second, several
patches may contribute to a single vulnerability, which makes the verification impractical. Finally,
because of the limitation of branch coverage of the concolic testing, we have false negatives in
verification phase. In future research, we will study the classification of security patches and the
searching strategies of concolic testing for more efficient vulnerability verification.
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