Reducing Payload Scans for Attack Signature Matching
Using Rule Classification

Sunghyun Kim and Heejo Lee*

Korea University, Seoul 136-713, South Korea
{afshkim, heejo}@korea.ac.kr

Abstract. Network intrusion detection systems rely on a signature-based detec-
tion engine. When under attack or during heavy traffic, the detection engines need
to make fast decision whether a packet or a sequence of packets is normal or ma-
licious. However, if packets have a heavy payload or the system has a great deal
of attack patterns, the high cost of payload inspection severely diminishes the de-
tection performance. Therefore, it would be better to avoid unnecessary payload
scans by checking the protocol fields in the packet header first, before executing
their heavy operations of payload inspection. Furthermore, when payload inspec-
tion is necessary, it is better to compare attack patterns as few as possible. In this
paper, we propose a method which reduces payload scans by an integration of
processing protocol fields and classifying payload signatures. While performance
improvements are dependent on a given networking environment, the experimen-
tal results with the DARPA data set show that the proposed method outperforms
the latest Snort over 6.5% for web traffic.

1 Introduction

Intrusion detection is a set of techniques and methods that are used to detect suspicious
activities both at the network and host level. The process of intrusion detection aims
to find data packets that contain any known intrusion-related signatures or anomalies
related to the Internet protocols. Intrusion detection methods fall into two basic cate-
gories: signature-based intrusion detection and anomaly-based detection.

Signature-based detection is used to compare against activity in the network or host
with predefined signatures which are produced by an analysis of an attack or malicious
packets. This method relies on a database of attack signatures. Therefore, it is only
as effective as its database. Most signatures have patterns to search known attacks.
Anomaly-based intrusion detection, by contrast, utilizes a more generalized approach
when searching for and detecting threats in a network. A rule of normal behavior is
developed and when an event falls outside that norm, it is detected and logged. The
behavior is a characterization of the state of the protected system, which is a reflective of
the system health and is sensitive to attacks. In this context, an anomaly-based method
of intrusion detection has the potential to detect new or unknown attacks. In a manner
to similar to the signature-based method, anomaly-based intrusion detection relies on
information that signifies what is normal and what is an anomaly.

* Corresponding author.

Y. Mu, W. Susilo, and J. Seberry (Eds.): ACISP 2008, LNCS 5107, pp. 350-360] 2008.
(© Springer-Verlag Berlin Heidelberg 2008

Reducing Payload Scans for Attack Signature Matching Using Rule Classification 351

Network Intrusion Detection System(NIDS) captures data from the network and ap-
plies rules to that data or detects anomalies. NIDS detects malicious activities such as
denial of service attacks, port scans or even attempts to hack into computers by moni-
toring network traffic. Based on a set of signatures and rules, after a match is found, the
detection system takes some actions, such as logging the event or sending an alarm to a
management console. Numerous studies about NIDS have attempted to rapidly decide
which packets are malicious.

Recently, a large number of signatures are associated with well known ports, such
as HTTP and SMTP. Also, because volume of multi-media data, such as video, file
download services of web sites and P2P services, is increasing at an amazing rate, the
cost of pattern matching in the packet payload is increasing. Therefore, to reduce the
cost of payload scanning, it is reasonable to check the protocol fields before searching
the payload to compare patterns. This is why we proposed the method whereby the
protocol fields have a great priority than the packet payload for signature matching. The
proposed method is similar to research on rule classification by protocol fields such as a
decision tree [8] or an evaluation tree [9]. However, our method calculates all possible
results, based on expected values of the protocol fields and makes small rule groups.
Thus, the payload inspection of the packets is performed only when it is necessary. Our
method has some advantages compared with previous methods, which are as follows:

e [t processes the rules without considering the values of protocol fields.

e Itis aflexible structure such that we can change the examining sequence of protocol
fields and add or remove some of the protocol fields.

e It is more effective to handle the complex rules.

The contribution of this study is to propose a new method of rule set classification
and the integrated processing of protocol signatures. In spite of additional overhead, it
can yield small rule groups and provide fast detection. In the remainder of this paper,
§2 briefly provides related works. §3 describes the proposed method. §4 analyzes the
performance. §5 presents experimental results. In §6, we summarize our experience.

2 Related Works

Just as a network packet consists of the header and the payload, the research about
signature matching can be classified into two categories. One is a pattern matching for
a packet data, which consists mainly of string matching. The other is the classification
of a rule set by the protocol fields. The former focuses on reducing the number of
rules to be searched by grouping, in other words classification or clustering. The latter
mainly focuses on the means to rapidly certain strings. We will briefly discuss some of
the methods for signature matching and explore Snort’s internal.

For the payload matching, several pattern matching algorithms have been proposed.
Among the single pattern matching, a well-known algorithm is the Boyer and More
algorithm [2]. It preprocesses the target string that is being searched for to generate a
table of mismatch skip values based on the pattern position involved in the mismatch.
Another well-known algorithm, Knuth-Morris-Pratt(KMP) [3] also preprocessed pat-
terns, to generate a look-up table that indicates how many positions the pattern can be
shifted to the right based on the position in the pattern where a mismatch occurs.

352 S. Kim and H. Lee

The multi-pattern matching method searches a text string for the occurrence of any
pattern in a set of patterns, using only a single iteration. A well known algorithm is the
Aho-Corasick(AC) algorithm [4] which preprocesses the set of patterns, to construct a
pattern matching machine based on a deterministic finite automaton (DFA). The match-
ing procedure works by reading successive characters from the input string, making
state transitions based on each character, and producing output after a complete pat-
tern is matched. The Wu-Manber algorithm [5], is based on the bad character heuristic,
which is similar to Boyer-Moore, but uses a one or two-byte bad shift table constructed
by re-processing all the patterns, instead of only one. Also it uses the hashing table to
index the patterns in the actual matching phase, thus saving a great deal of time. An-
other method, Exclusion-based signature Matching(E2x B) [6] is designed to provide
rapid negatives, when the search string does not exist in the packet payload.

At well as this, research about the classification of rules has progressed. Kruegel
and Toth proposed a decision tree method to improve signature-based intrusion detec-
tion [8]. In order to create an optimized decision tree, which is used to find malicious
events, using a minimum of redundant comparisons, this method uses a well-known
clustering algorithm which is applied in machine learning. The algorithm builds a de-
cision tree from a classified set of data items with different features using the notion of
information gain. Sinha et al [9] proposed an evaluation tree which determines which
rule groups are maintained in memory by choosing protocol fields and values recur-
sively. Initially, the method selects the protocol field that is most effective in rejecting
the rules, and then separates those groups by values of the chosen protocol field. After
forming groups for each of these values, the algorithm recursively splits the groups by
other protocol fields that reject at least a threshold number of rules, producing smaller
groups. By this means, it generates a hierarchy of protocol fields and values, for which
groups are maintained. As discussed above, these methods are used for IDSes’ detection
engines.

Among several NIDSes, Snort [1,10] is an open source network intrusion prevention
and detection system utilizing a rule-driven language, which combines the benefits of
protocol and payload signature. Snort is commonly used to actively block or passively
detect a variety of attacks and probes performing protocol analysis and content match-
ing. Snort considers rules to be composed of 2 components, a rule header and a rule
option. The rule header has predicates of the protocol fields. The rule option mainly
has strings for pattern matching, and other predicates. After parsing the rules, based on
the port, Snort makes 3 port groups, which consist of; a destination port group for rules
having a unique destination port, a source port group for rules having a unique source
port and a generic port group for rules without a unique destination port and source port.
Each port in a port group has two multi-pattern matchers. One is for content, which is a
keyword that searches for specific content in the packet payload. The other is for uricon-
tent, which is a keyword that searches the normalized request URI field. Also each port
has rule chains for rules without content or uricontent. A generic port group is copied
to other port groups for efficiency. Snort provides the Wo-manber and the Aho-corasick
pattern matching algorithm. When packets are going through, based on port number,
multi-pattern matchers of the corresponding port group are called. In the worst case, a
packet is scanned three times, once for the destination port group, once for the source

Reducing Payload Scans for Attack Signature Matching Using Rule Classification 353

port group and once for the generic rule group. In the best case, a packet is only scanned
once for one of the three groups. Snort only uses one protocol field for grouping rules.
Under the condition of a heavy payload or a large number of patterns, a great deal of
time is required for inspecting the payload. Our method integrates rules’ predicates into
each protocol field and pre-calculates all possible results. Because we inspect the pro-
tocol fields first, we avoid unnecessary payload scanning. In what follows, Our method
is discussed in detail.

3 Detection and Classification by Grouping Predicates

NIDS has been deployed behind a firewall which inspects network traffic passing through
it and denies or permits passage based on policy. Thus, a large number of signatures are
associated with specific ports. In table 1, based on our analysis of snort’s rules[1] (VRT
Certified Rules for Snort v2.7), among 6985 default rules related to TCP, 4935 (70%)
rules are associated with 3 destination ports(80,445,139) and 1 source port(80).

Table 1. Top 5 lists of Snort’s TCP rules classified by port

Destination Port Rules Source Port Rules
80 1570 80 743
445 1359 1024 42
139 1263 23 13
1521 291 666 8
1024 147 5050 6

Our method integrates each predicate of protocol field used in the rule set into a
single data structure, we call a protocol filter, and calculates all possible results based
on the values of the protocol field in advance. After pre-calculating the results, it makes
small rule groups by the combination of the pre-calculated results. When a packet is
moving through the system, it searches each result based on value of a packet’s protocol
fields. Combining these results, it identifies a single pre-calculated rule group. Only
checking this rule group, our method can reduce the chance of payload scanning and
alleviates the load of pattern matching. Figure 1 shows our method briefly. We shall
explain this in more detail.

3.1 Formal Description

We will restrict our description to relationships of protocol fields. Let R be the set of n
rules, i.e., R = {r1,7o,...7n}. Let ' = {f1, fa,...., fm} denote the set of m protocol
fields present in the rule set. Let Py, = {p}i, p%, vy p’]%T} denote the set of the predi-

cates associated with a protocol field f; in the rule set. Also let Vi, = {v} , vJ%i, e v}}
denote the set of unique values which are extracted from a protocol field f;’s predicates
used in R and sorted in ascending order. A rule in R can be described as the rela-
tionship of predicates of protocol fields like r; = pjf1 A p;z Ap]]im. And a predicate

354 S. Kim and H. Lee

Packetl Protocol Fields | Payload |

inspection pattern matching
m Protocol Filters) ==+ ’| Pattern Groups | """ >
grouping
parsing AN I i ,
Rules | Protocol Fields | Payload |

Fig. 1. Detecting and grouping by protocol filters

used in R can be presented like p; =10 v’f“i where (©) is an operator used in the
predicate(=,<,>,etc.). Based on values of f;, each predicate in Py, can be true or false.
Likewise, based on each predicate results of Py,, each rule in R can be false or true.
Therefore, Based on values of f;, each rule in R has various result. Let s; denote all
rules’ results depending on an element of Vy,. Let dom(f;) denote f;’s domain.

Like Figure 2, dom(f;) can be divided into (2k + 1)’s sub range or sub domain,
where k = [V},|. Let s denote rule set’s result in the 4" subrange of dom(f;). And
we describe Sy, = {s}, sfti,s%“} to present the set of all possible results which
depend on all values of f;. We can find the all results of the rule set by each value of the
protocol field f; used in the rule set in advance. Based on values of f;, Py, is decided and
then depending on Py,, which rules among 71, 3, ...y, is matched or not is determined.

sfﬁ of Sy, has the results of 71,7y, ...r, regarding to v} of Vy,. Likewise, sfc] +oof

Sy, has the results of 71, 7y, ...r,, depending on all values between vi and v}jl of Vy,.
Because the rule set includes Uj%’ we can calculate s; Also, we can compute sfc] +1
if we generate any value which is included in between v’ . and v;jl. The proposed
method is to pre-calculate possible results, i.e., Sy, and stores them for decision about

rules’ matching.

=2 + 6 -
S; s s z
-;1 5 s 3 fi 5 Sf 2k+2
Sy sy G eeeeeeeseee s
L) . S
| 1 1 1
1 =] 3 k
Y. y .)7 emmmmmmememaa y .
Yy, Yr, Uy, Yy,

Fig. 2. Rules’ results based on values of the protocol field f;

For example, if r; has a predicate for destination port, like p}iport = {dport, >, 3},
71 obtains 3 results which is one for values of less than 3, one for a value of 3, and one
for values of greater than 3. If r5 having a predicate for destination port, like pzport =
{dport,=, 6}, is added, r; and o can obtain 5 results which is one for values of less
than 3, one for a value of 3, one for values of greater than 3 and less than 6, one for

Reducing Payload Scans for Attack Signature Matching Using Rule Classification 355

values of 6, and one for values greater than 6. The number of results of the rule set
including a predicate of protocol field f; is 5 because of 2 x n|Vy, | + 1.

3.2 Detection by Protocol Filters

As has demonstrated, we pre-calculate all the rules’ results and save them into an array
data structure, so called a protocol filter. Figure 3 shows the proposed method. When
a packet is reached, based on the value of the packet’s protocol field, we search the
results of the rule set in protocol filters. Based on the combined results of the rule set,
we identify whether the packet need a payload scan or not. For example, we have two
rules similar to Snort’s rule such as the following.

r1:alert tep 10.1.1.1 25 —>!$HOME_NET 80 ... ;content:login;. . .
ro: alert tep 20.1.1.1 1024:2024 —>$HOME_NET !143 ... ;content:root;. . .

1) «
vl v, | | Uk
Protocol filter f; i J i
1 2 3 4 "_)k ‘2i<+1
S5 15n |5 |5 S | 5n
1] X
U. U, v
et F f. A f.
Protocol filter /2
1 2 3 4 2k ‘2i<+1
S 15 1% [k S [SE
. - . ‘1 “_’ gk
Protocol filter £ L_f; L_f{- L- :
1 2 3 4 "’k 2k+1
S [S | S | She St | Sk

Protocol fields

£ | ‘ 2

Packet ‘ i

payload

3 2
Result: s & Sp&--- S;

Jm

Fig. 3. Detection using protocol filters

Figure 4 shows in detail the proposed method. Let’s make the protocol filter for
destination port with r; and . If a packet’s destination port is less than 80, greater than
80 and less than 143, or greater than 143, only 5 is matched. In case of the destination
port 80, both rules are matched. However, for port 143, both rules are not matched.
We represent the rules’ result as bit strings. We call this structure “protocol filter”.
We made the protocol filter for the source port in the same way. In this case, we only
used two protocol fields and made two protocol filters. When a packet P; is moving
through, we search for the results of rules in protocol filter based on protocol field’s
value. If we obtain all corresponding result bit strings of the protocol filters, the final
result is decided by ‘AND’ bit operation to each result bit strings. The other predicates
including pattern matching are indexed by the position of bit strings. Based on value of
bits, we filter out unnecessary rules.

356 S. Kim and H. Lee

Protocol filter for source port
> 25 1024 2024 [<
00 10 00 01 01 01 00

Protocol filter for destination port

> 80 143 <
01 1" 01 00 01
Protocol fields
| Source port destination port | payload
Packet | ... [25 | .. [13 [] .. |
10 & 00 = 00 (Not match)

Fig. 4. Example of protocol filters

As well as reducing the cost of payload searching, the proposed method has the ad-
vantage that upon execution. It only performs search operation, irrespective of the rule
set’s predicates. Therefore, the greater the complexity of rules’ predicates, the better the
performance. Also, because protocol filters do not have a fixed order, we can change the
search order. For example, if we can obtain information that a certain protocol field can
drop early normal packets, we can change the checking order of protocol filters.

3.3 Grouping by Protocol Filters

As noted previously, a protocol filter for f; provides the integrated processing of pred-
icates and result of the rule set related to f;. Taking this idea further, if we calculate
all combinations of protocol filters for fi fa ... fn, in advance, we obtain all possible
results of the rule set, i.e., Sf,, S¥,, ...SF,, . The maximum number of these results is 2"
if there are n rules.

In Figure 4, when we have two rules, we can make the maximum four distinct results
of the rule set, because of 22. However, if we calculate the combination of 2 protocol
filters’ result bit strings, we can obtain 2 result bit strings such as ‘01°,°10’. Based on
the number of result bit strings, we can classify rules into 2 small groups. We ignore
result ‘00’, which means all rules are not matched and ’11°, which is impossible results
bit strings. The reason we do not make rule groups as much as 2", is that we can remove
unnecessary rule groups by a combination of protocol filters. The greater the number of
results, the smaller number of rules in a group. The rule grouping by protocol filters can
easily tune the degree of grouping. Whereas smaller rule groups are made when many
protocol filters are used, larger rule groups are made when few protocol filters are used.
By contrast, the overhead of protocol fields matching is proportional to the number of
protocol filters.

4 Performance Analysis

The proposed method is based on the fact that, in general, pattern matching of payload
needs more processing time than protocol fields matching. In the case of TCP, while
the packet header has 20 bytes without option, the packet data can have 1460 bytes,

Reducing Payload Scans for Attack Signature Matching Using Rule Classification 357

considering MTU(Maximum Transmission Unit). The size of the packet data and values
of the protocol field depend on network environment. Therefore, if a packet has little or
no data, checking the payload first can yield inferior results. Also the number of patterns
which affects performance can be scattered in proportional to the number of protocol
fields used in grouping. We analyze performance these two aspects.

We compare a single protocol field grouping with multiple protocol fields grouping.
To simplify our analysis, we assume that rule set, R, has n rules and that each rule has
a single predicate of fi, fa, ..., fm. So, every rule has m predicates. As noted above,
V7, is the set of unique values which are extracted from a protocol field f;’s predicates
used in R and P, is the set of the predicates associated with a protocol field f; used in
R. In addition, let Dy, denote f;’s domain and let Ay, denote all f;’s value ranges used
in Py,. If f;” value is within Ay,, at least one among P, satisfy the predicate. In the

case of a single protocol field grouping, the average rule count of subgroups is “}lﬁ and

probability of payload scanning is g—fj. However, if we make rule groups with multiple
protocol fields, such as f1, fa, ... fm, the average rule count of subgroups is W
In a manner similar to the average rule count of subgroups, the probability of anlokad

scanning is Hle(gﬁ L). Clearly, the more protocol fields are used, the few rules are
included in a subgrouf) and the lower the probability of payload scanning is. Small rule
groups mean few patterns to search in the payload, in other words, the pattern match
engines have a light work load.

For example, if rules are grouped only by the destination port, n rules can be scat-
tered with 216 because the destination port has 2 bytes. However, if rules are grouped by
a combination of the destination port, source port, destination IP and source IP, which
consist of 12 bytes, n rules can be scattered with 2%, Also, the probability of payload
scanning for subgroups is lowered in the same manner. However, the performance of the
proposed method is strongly dependent on the environment of network and distribution
of rules.

S Experiments

To implement the proposed method, we have modified Snort version 2.7.0.1. The ex-
perimental platform is a personal computer with a Pentium 4 Core 2 6,400 CPU and 3
Gbytes RAM. We used the Linux operating system, Fedora 6.

The rule set used for the experiments consisted of only the TCP rules among the
VRT Certified Rules for Snort version 2.7. We used well-known data sets, the DARPA
Intrusion Detection Evaluation Data Set from MIT Lincoln Lab [11]. We analyzed three
types of the DARPA data files and selected ports which have a large number of rules and
frequently appeared in data files at the same time. Table 2 shows the average payload
size and the percentage of several destination ports in data files.

We made 4 protocol filters using destination port, source port, destination IP, and
source IP. Table 3 shows how the rule set can be grouped by 4 protocol fields, compare
to Snort’s a single protocol field grouping. In the case of the destination port 80, whereas
Snort makes one port group with 2026 rules, the proposed method make 4 small groups.

358 S. Kim and H. Lee

Table 2. Destination port’s characteristics of DARPA data set

Destination Port 1999 weekl | 2000 LLDOS1.0 | 2000 window NT

-~ avg. payload bytes 261 200 409

% of total traffic 5.7 247 6.02
- avg. payload bytes 393 623 491

% of total traffic 139 1025 16.94
” avg. payload bytes 113 114 97

% of total traffic 0.27 012 0.34
13 avg. payload bytes - 126 192

% of total traffic - 0.17 0.16

Table 3. Rule classification by protocol fields
Classification 80 25 23 139

rule/group | rule/group | rule/group | rule/group

Destingti
estination port or 2006/1 147/2 25/1 1263/1

source port (Snort)
4 Protocol Fields 3866/4 215/3 25/1 1263/1

Table 4. CPU times of DARPA data set

Dest Port | method | 08| BEE 0 | window N
Snort 26.3 124 29.5
80 Prot. Filter 24.6 115 28.1
Improvement 93.6% 93.5% 93.5%
Snort 038 0.52 0.87
% Prot. Filter 0.73 05 0.82
Improvement 91.2% 96.1% 94.2%
03 Snort 0.038 0.026 0.035
Prot. Filter 0.019 0.014 0.02
Improvement 50% 54% 57%
139 Snort - 0.45 1.19
Prot. Filter - 0.0049 0.92
Improvement - 1% 1%

We used the default IP address setting, consisting of only a home net and an external
net. Therefore, the effect of the grouping rules was tiny.

After the method was executed 10 times, we recorded the average time of detection.
We only evaluated the packets over 20 bytes which is the TCP header size, considering
overhead. In Table 4, the proposed method improved the processing time to various

Reducing Payload Scans for Attack Signature Matching Using Rule Classification 359

degrees, compared with Snort. In the case of port 80 and port 25, improved performance
results from the port’s small rule groups, because the proportion of packets that skipped
payload inspection is below 0.01%. In the other cases, improvement of port 23 and port
139 results from skipped payload inspection, because the proportion of skipped packets
is between 37% and 100%. In the case of data file LLDOS1.0 and 139 port, while all
packets have the external network addresses in the source IP field, all rules have the
internal network addresses in the source IP field. Thus the protocol filters dropped all
packets without payload inspection. Clearly, grouping by multiple protocol fields can
improve performance in that the amount of pattern matching and the probability of
payload scanning are reduced. Because of a packet’s payload size and the distribution
of the protocol fields’ values, there will be a variety of results. If we use the more
protocol fields to classify a rule set, we can make the smaller rule groups and avoid
a great number of payload scanning. Also if the packets have a heavy payload, the
performance will be much better.

6 Conclusions

In this paper, we proposed the method to reduce the cost of payload matching. The
proposed method involves integrated detection of protocol fields and the separation of
a large signature group into several small signature groups, by multiple protocol fields.
The effect of the proposed method can be various depending on rules and packets.
However, the proposed method can reduce the payload scanning for patterns matching
and reduce the number of patterns for packets to check, because packets which do not
match protocol fields can be dropped before payload scanning. In addition, the pro-
posed method is independent of a predicate’s operand, because of the pre-calculation of
all the predicates. Also this allows a detailed rule description, which enables us to easily
represent complex and complicated predicates. Unfortunately, it suffers from rule repli-
cation and bit operation overhead. However, the memory requirement can be tolerated
by system, if we use only some overloaded rule groups. For a bits operation, if we adapt
the proposed method to only heavy payload packets, the advantage generally more than
compensates for the overhead. In the future, we intend to include some protocol fields
which are frequently used in rules and can reject packet early. Also we will evaluate our
method in real network environments.

Acknowledgments

This work was supported in part by the ITRC program of the Korea Ministry of Knowl-
edge Economy. Additionally supported by a Korea University Grant.

References

1. Snort:Open source Network Intrusion Detection System, http://www.snort.org
2. Boyer, R.S., Moore, J.S.: A fast string searching algorithm. Communications of the ACM 20,
762-772 (1977)

http://www.snort.org

360

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

S. Kim and H. Lee

. Knuth, D.E., Morris, J.H., Pratt, V.R.: Fast pattern matching in strings. SIAM Journal of

Computing 6, 323-350 (1977)

. Aho, A.V,, Corasick, M.J.: Fast pattern matching: an aid to bibliographic search. Communi-

cations of the ACM 18, 333-340 (1975)

. Wu, S., Manber, U.: A Fast Algorithm for Multi-Pattern Seaching, Technical Report TR-94-

17, Department of Computer Science. University of Arizona (May 1994)

. Wang, X., Li, H.: Improvement and Implementation of Network Intrusion Detection System.

Journal of Communication and Computer, 49-52 (January 2006)

. Fisk, M., Varghese, G.: Fast Content-Based Packet Handling for Intrusion Detection, UCSD

Technical Report CS2001-0670. University of California, San Diego (May 2001)

. Kruegel, C., Toth, T.: Using Decision Trees to Improve Signature-based Intrusion Detection.

In: Vigna, G., Kriigel, C., Jonsson, E. (eds.) RAID 2003. LNCS, vol. 2820, pp. 173-191.
Springer, Heidelberg (2003)

. Sinha, S., Jahanian, F., Patel, J.M.: WIND:Workload-Aware INtrusion Detection Recent

Advances in Intrusion Detection. In: Zamboni, D., Kriigel, C. (eds.) RAID 2006. LNCS,
vol. 4219, pp. 290-390. Springer, Heidelberg (2006)

Roesch, M.: Snort: Lightweight Intrusion Detection for Networks. In: Proc. of the USENIX
LISA 1999 Conference, pp. 229-238 (November 1999)

McHugh, J.: Testing Intrusion Detection Systems: A Critique of the 1998 and 1999 DARPA
Intrusion Detection System Evaluations as Performed by Lincoln Lab. ACM Trans. Informa-
tion and Systems Security(TISSEC) 3(4), 262-294 (2000)

Commentz-Walter, B.: String Matching Algorithm Fast on the Average. In: Proc. of the 6th
International Colloquium on Automata, Languages, and Programming, pp. 118-132 (1979)
Paxson, V.: Bro: A System for Detecting Network Intruders in Real-Time. Computer Net-
works 31(23-24), 2435-2463 (1999)

Sommer, R., Paxson, V.: Enhancing byte-level network intrusion detection signatures with
context. In: Proc. of the 10th ACM Conference on Computer and Communication Security
(CCS 2003), pp. 262-271 (October 2003)

Kruegel, C., Toth, T.: Automatic rule clustering for improved signature-based intrusion de-
tection, Technical report, Distributed systems group:Technical Univ. Vienna, Austria (2002)
Dreger, H., Feldmann, A., Mai, M., Paxson, V., Sommer, R.: Dynamic Application-Layer
Protocol Analysis for Network Intrusion Detection. In: Proc. of the 15th USENIX Security
Symposium, pp. 257-272 (July 2006)

Allen, W.H.: Mixing Wheat with the Chaff: Creating Useful Test Data for IDS Evaluation.
IEEE Security & Privacy, 65-67 (July 2007)

Antonatos, S., Anagnostakis, K.G., Polychronakis, M., Markatos, E.P.: Performance analy-
sis of content matching intrusion detection systems. In: Proc. of the 4th IEEE/IPSJ SAINT
(January 2004)

Mell, P., Hu, V., Lippmann, R.: An overview of issues in testing intrusion detection systems
(June 2003),
http://csrcnist.gov/publications/nistir/nistir-7007.pdf

http://csrcnist.gov/publications/nistir/nistir-7007.pdf

	Introduction
	Related Works
	Detection and Classification by Grouping Predicates
	Formal Description
	Detection by Protocol Filters
	Grouping by Protocol Filters

	Performance Analysis
	Experiments
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

