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ABSTRACT Security patches play an important role in detecting and fixing one-day vulnerabilities. How-
ever, collecting abundant security patches from diverse data sources is not a simple task. This is because
(1) each data source provides vulnerability information in a different way and (2) many security patches
cannot be directly collected from Common Vulnerabilities and Exposures (CVE) information (e.g., National
Vulnerability Database (NVD) references). In this paper, we propose a high-coverage approach that collects
known security patches by tracking multiple data sources. Specifically, we considered the following three
data sources: repositories (e.g., GitHub), issue trackers (e.g., Bugzilla), andQ&A sites (e.g., StackOverflow).
From the data sources, we gather even security patches that cannot be collected by considering only CVE
information (i.e., previously untracked security patches). In our experiments, we collected 12,432 CVE
patches from repositories and issue trackers, and 12,458 insecure posts from Q&A sites. We could collect at
least four times more CVE patches than those collected in existing approaches, which demonstrates the
efficacy of our approach. The collected security patches serves as a database on a public website (i.e.,
IoTcube) to proceed with the detection of vulnerable code clones.

INDEX TERMS Open source software, software security, vulnerability database.

I. INTRODUCTION
As the open-source supply chain has been accelerated, the
open-source vulnerabilities are also in the limelight. Accord-
ing to the ‘‘State of the Software Supply Chain Report’’ of
Sonatype [20], 29% of popular open-source software (OSS)
projects contain at least one known vulnerability that may
become the attack surface to exploit the entire system (i.e.,
called one-day exploits). In practice, cyberattacks which
aimed at OSS projects have exponentially grown. For exam-
ple, supply chain attacks, which are caused by the improper
management of OSS, increased 650% in 2021 [20].

To prevent such attacks, developers mainly use the follow-
ing twomethods: (1) OSS version updates (e.g., [5], [26]) and
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(2) fixing vulnerable source codes by leveraging Common
Vulnerabilities and Exposures (CVE) information (e.g., [9],
[10], [27]). To proceed with such methods, especially the lat-
ter one, it is necessary to construct a large-scale vulnerability
database, which is containing security patches and vulnerable
codes [21], [23].

A. LIMITATIONS OF EXISTING APPROACHES
Despite the importance of constructing a vulnerability
database, existing approaches have limited in terms of
collecting abundant security patches. Several approaches
(e.g., [11], [18], [21], [22], [23], [25]) attempted to construct
vulnerability database, but they exhibited low patch collec-
tion coverage owing to the following two reasons: (1) limited
data sources and (2) shallow scanning problems. Although
vulnerability information is distributed among various data
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sources, previous approaches only focused on GitHub as their
target data source for collecting security patches. In addi-
tion, most existing approaches considered only the security
patches where the patch URL was provided in the NVD ref-
erences, resulting inmissingmany security patches. Although
some approaches [10], [25] took into account the hidden secu-
rity patches that could be collected by searching for CVE ID
keywords (in commit messages), simply matching keywords
may lead to many false positives. Thus, we need to collect
security patches that are not directly provided by considering
various data sources.

B. OUR APPROACH
In this paper, we propose a high-coverage approach that
collects known security patches by tracking multiple data
sources. We construct a large-scale patch database called
xVDB (Extended Vulnerability DataBase) by applying our
approach. The key idea of our approach, which is distinguish-
able from existing approaches, is to collect known security
patches by leveraging hidden connectivity between public
vulnerability databases and security patches.

To address the limited data source problem, we consider
the following three data sources: (1) repositories, issue track-
ers, and Q&A sites. Repositories (e.g., GitHub) are most
widely used when managing software source codes, and issue
trackers (e.g., Bugzilla) are widely leveraged for managing
security bugs and vulnerabilities. Moreover, Q&A sites (e.g.,
Stack Overflow) are not managed by publicly disclosed vul-
nerability database, such as the NVD, but insecure code snip-
pets are being produced from such sites and propagated to
OSS [6], [7]. Therefore, we determined that a wealth of secu-
rity patches could be gathered from the aforementioned three
data sources.

To address the shallow scanning problem, we first clas-
sify vulnerabilities based on the method of providing secu-
rity patches: vulnerabilities with (1) direct patch links, (2)
indirect patch links, and (3) invisible patch links. We then
devise three patch collection methods according to each link
type: (1) a method that directly collects security patches from
CVE information (i.e., direct patch links), (2) a method that
collects security patches using hints (e.g., commit ID) on the
website provided by CVE information (i.e., indirect patch
links), and (3) a method that collects security patches from
a data source by checking whether patches have security-
related features, e.g., CVE ID keywords and security sensitive
APIs (i.e., invisible patch links).

C. EVALUATION AND FINDINGS
In our experiments, we collected 12,432 CVE patches
from repositories and issue trackers for the C, C++, Java,
JavaScript, Python and Go languages. In addition, we col-
lected 12,458 insecure posts from Q&A sites for C, C++ and
Android posts. The collected security patches are at least four
times more than those collected in the existing approaches,
which is demonstrating the high patch collection coverage of
our approach (see Table 2).

Our further analysis affirmed that xVDB exhibits the fol-
lowing five characteristics (see Section IV-C): (1) many secu-
rity patches that urgently need to be patched (i.e., medium and
high severity) were collected in xVDB, (2) various types of
vulnerabilities, including ‘‘Buffer Overflow’’ and ‘‘Out-of-
bounds Read and Write’’, were gathered in xVDB, (3) more
than half of the vulnerabilities were collected via indirect and
invisible patch links, (4) most security patches were related
to C/C++ languages, and (5) the reference site where the
most patches were collected was GitHub, but a considerable
number of security patches were collected via issue trackers.

We serviced xVDB as a database to detect vulnerable code
clones on a public website (i.e., IoTcube [8]) to contribute to
the security of the software ecosystem.

This paper makes the following three contributions:
• We propose xVDB, a vulnerability database that is
constructed using a high-coverage patch collection
approach. The key idea of our approach is collecting
known security patches by identifying hidden connec-
tivity (e.g., commit ID and CVE ID keywords) between
public vulnerability databases and security patches.

• When we applied our approach, we collected 12,432
CVE patches from the repositories, issue trackers, and
12,458 insecure posts from the Q&A sites. Our approach
could collect at least four times more CVE patches than
those collected in existing approaches.

• We utilized xVDB as a database to detect vulnerable
code clones on IoTcube [8], a public web platform for
discovering security vulnerabilities in software.

II. MOTIVATION
In this section, we introduce several terms used throughout
this paper and then clarify our target problems.

A. BACKGROUND AND TERMINOLOGY
1) PUBLIC VULNERABILITY DATABASE
To mitigate risks caused by known security vulnerabili-
ties, previously discovered vulnerabilities once discovered
are managed through a public vulnerability database (e.g.,
NVD [15], CVE MITRE [14], and CVE Details [4]) in the
form of CVE.

Although there are slight differences between public vul-
nerability databases, the following pieces of information are
commonly provided by them:
• CVE ID: A vulnerability unique identifier assigned by
the MITRE corporation and CVE Numbering Authori-
ties (CNAs) (e.g., Google, IBM corporation).

• Descriptions: A summary of the overall introduction
of each vulnerability, including affected products and
attack vectors.

• Severity: An indicator that represents the severity of a
vulnerability (e.g., CVSS).

• Types:A value indicating the type of vulnerability, such
as buffer overflow or remote code execution. CWE is
mainly used.
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• Affected software configurations: The name and ver-
sion information of the software that are affected by
the vulnerability (e.g., Common Platform Enumeration,
CPE for short).

• References: A set of reference links related to the vul-
nerability. This includes URLs that contain the patch or
a reproduction method for the vulnerability.

2) KNOWN AND UNKNOWN VULNERABILITIES
We define a known vulnerability as a vulnerability that is
managed by public vulnerability databases by assigning a
CVE ID. All known vulnerabilities have corresponding secu-
rity patches that are often disclosed through GitHub com-
mits [11] or issue trackers such as Bugzilla [25]. By contrast,
we define an unknown vulnerability as a vulnerability that is
not managed by CVE. Here we define that unknown vulnera-
bilities are patched secretly but are notmanaged byCVE from
the public vulnerability database. This concept is somewhat
different from a zero-day security vulnerability, which may
still exist in the latest version of certain software without
being patched.

3) SECURITY PATCH
We define a security patch as a source code-level patch that is
applied to resolve security issues [10], [27]. In general, secu-
rity patches are provided in the form of ‘‘diff’’ of a code
before and after applying the patch. For example, Listing 1
shows the security patch snippet for CVE-2021-41216, a heap
buffer overflow vulnerability in TensorFlow.

Listing 1. Security patch snippet for CVE-2021-41216.

From the security patch, we can obtain several pieces
of information for efficient vulnerability management. For
example, we can identify the vulnerable and patched source
files (i.e., array_ops.cc), the index values of files before
and after applying the patch (i.e., line #3 in Listing 1), the
code line numbers to which the patch was applied (i.e., 7 lines
from line #168 in the ‘‘array_ops.cc’’ file), and the
actual code lines that were added or deleted in the security
patch (i.e., lines #11 and #12 in Listing 1).

B. GOAL AND CHALLENGE STATEMENT
1) GOAL
In this paper, we construct a vulnerability database (called
xVDB) by collecting information on known vulnerabilities.
Specifically, our main goal is to collect security patches of

vulnerabilities at the source code levels, which can be used to
detect one-day vulnerabilities [9], [10], [27]. Subsequently,
xVDB can assist in detecting propagated vulnerabilities (i.e.,
1-day vulnerabilities) and consequently, can be used to miti-
gate threats caused by vulnerable code reuse.

Constructing a rich and well-refined vulnerability dataset
is important because it has a significant impact on the vulner-
ability detection process. Since most of the existing one-day
vulnerability discovery techniques (e.g., [10], [27]) detect
vulnerabilities based on the collected vulnerability data, fail-
ing to construct an abundant and well-refined vulnerability
dataset may compromise the vulnerability detection accuracy
(e.g., missing many vulnerabilities).

2) CHALLENGES
The collection of security patches is not a simple task. The
biggest obstacle is the diversity of data sources. Vulnerability
information is distributed among various sources, such as
repositories (e.g., Git), vulnerability databases (e.g., NVD),
and issue trackers (e.g., Bugzilla), in various forms.

Since the data sources provide vulnerability information in
different ways and are complementary to one another, consid-
ering only one data source may result in a biased and insuffi-
cient dataset. For example, Kim et al. [10] collected vulner-
ability information only from GitHub, and Woo et al. [25]
considered GitHub and issue trackers. However, a recent
study (i.e., PatchScout [21]) demonstrated that approaches
that considered only repositories showed a low patch collec-
tion coverage (i.e., at most 53%) and lack of accuracy (i.e.,
only 47% of the collected data was accurate). In particular,
in PatchScout, a significant amount of human intervention is
required to collect security patches.

Moreover, each data source may not explicitly provide vul-
nerability information. For example, a commit that patched a
specific vulnerability exists on GitHub, and the vulnerability
is registered in a public vulnerability database with a specific
CVE ID. However, there may not be a direct connection
between the patch commit URL and corresponding CVE vul-
nerability (i.e., invisible links). Therefore, there is a need for
an automated method that can collect security patches while
considering various data sources.

FIGURE 1. High-level workflow of xVDB construction.

III. METHODOLOGY
In this section, we introduce the methodology for construct-
ing xVDB. The high-level workflow for constructing xVDB
is shown in Figure 1. The main goal of our approach is to col-
lect known security patches by trackingmultiple data sources.
To address the low coverage from limited data sources,
we collect security patches from three target data sources:
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repositories, issue trackers, and Q&A sites. Then, we collect
known security patches by identifying hidden connectivity
between public vulnerability databases and security patches.
We describe the collection method for obtaining security
patches directly and indirectly from CVE information (see
Section III-B2, and Section III-B3). In addition, we introduce
the method of collecting security patches that are invisible in
CVE information but can be collected from data sources (see
Section III-B4).

A. DEFINITION
This section introduces the key definitions used in our
approach.
Definition 1 (Basic Terms): We first define a few terms

upfront. CVE info page denotes an information page for each
CVE in the public vulnerability database (e.g., NVD andCVE
MITRE). CVE patch page refers to the page with the patch
of the CVE vulnerability. Self-managed repository refers to
a repository where the software manages its source code
through its own management system rather than being man-
aged by a major hosting platform such as GitHub.
Definition 2 (Classification of Patch Links):We categorize

security patches based on the method of providing security
patches from the CVE info page. Since each target data source
has the characteristic of providing security patches, and there-
fore we propose the appropriate collection methods by cat-
egorizing patches. To this end, we classified vulnerabilities
into the following three types: vulnerabilities with (1) direct
patch links, (2) indirect patch links, and (3) invisible patch
links (see Figure 2).

FIGURE 2. Vulnerability classification according to the way that the
security patch is served.

(1) Direct patch link: This refers to the case where the CVE
patch page is directly provided by the CVE info page.

(2) Indirect patch link: This refers to the case where the
CVE patch page is indirectly provided by the CVE info
page, e.g., the CVE info page provides a website con-
taining the security patch URL such as Bugzilla bulletin
board.

(3) Invisible patch link: This refers to the case where the
link between the CVE patch page and the CVE info page
is invisible.

Definition 3 (Target Data Sources): To collect security
patches, we target the following three data sources: (1) repos-
itories, (2) issue trackers, and (3) Q&A sites. Known vulner-

abilities and their corresponding patches are primarily shared
via the three target data sources. Here, we explain in detail
the reason for selecting each data source.

(1) Repositories (i.e., software repositories) are storage
locations for the collection of files of various different
versions of software programs. Since many software
products are developed in collaboration with develop-
ers, repositories are most widely used when managing
software programs. In particular, when a vulnerability is
discovered in the software source code, developers tend
to provide a patch code with a relevant message via the
repositories. Therefore, we first select the repositories
as our target data source. To create and manage the
repositories, version control systems such as Git, Sub-
version (i.e., SVN) andMercurial are used. In particular,
we focus on Git as our target data source.

(2) Issue trackers are tools for tracking bugs and managing
other issues in software vendors. Each vendor tends to
manage issues with their own issue tracking systems
(e.g., Mozilla manages with bugzilla.mozilla.org). Since
a considerable number of vulnerabilities were issued and
reported to CVE (which accounts for 5% of the total
CVEs), we select issue tracker as our target data source.

(3) Q&A sites (e.g., Stack Overflow) are platforms that
discuss code problems, and many developers rely on
such platforms [17]. Although insecure code snippets
from these platforms may be conveyed to OSS [6],
[7], the insecure code snippets are not managed by the
public vulnerability database. Therefore, we also con-
sider Q&A sites as our target data source. In particular,
we focus on Stack Overflow as our target data source.

B. COLLECTING SECURITY PATCHES
In this section, we introduce our key idea that was extracted
from our observations, and then propose patch collection
methods for each link type.

1) KEY IDEA

Observation
[Direct patch link]
The CVE info page provides the CVE patch page via
references (e.g., NVD reference URL), and the URLs
have certain patterns.
[Indirect patch link]
To provide security patches, the CVE info page provides
websites (e.g., issue trackers and self-managed reposi-
tories) via references. The websites may contain a hint
introducing a CVE patch page (e.g., Bug ID and com-
mit).
[Invisible patch link]
Even if there is no link that introduces the CVE patch
page in a CVE info page, the CVE patch page may
contain the corresponding CVE ID.
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Wefirst observed that a direct patch link is provided in certain
patterns, depending on the hosting platform (e.g., GitHub,
GitLab, Cgit, and GitWeb). The patterns are that the patch
links contain the git platform domain name (e.g., github.com
and gitlab.com) and the string ‘‘commit’’. For example, patch
links hosted on GitHub are provided in the following format:
https://github.com/user/repo/commit/commit_ID.

FIGURE 3. Example of where patches can be collected through the
website provided by the CVE info page.

In addition, we observed that some websites provided by
the CVE info page contain a hint that introduces the CVE
patch page. For example, when an issue is uploaded to an
issue tracker site, developers tend to leave the comments
with patch commits on the issue page. Figure 3 presents an
example of an indirect patch link. The CVE info page pro-
vides the issue link as references, and the issue post contains
corresponding patch links raised by comments.

Lastly, we observed cases in which a CVE ID was found
on the CVE patch page, even though there is no link related
to the security patch on the CVE info page. This is because
when known vulnerabilities are patched, developers tend to
leave a commit message with their CVE ID.

Listing 2. OpenVPN commit #cb4e35e.

As an example of an invisible patch link, we introduce
the case of CVE-2017-7521, a double-free vulnerability (see
Listing 2). Although the CVE-2017-7521 info page does not
provide a link for security patches, we can discover the secu-
rity patch by searching with CVE ID.

Therefore, we collect security patches by leveraging these
observations. Figure 4 illustrates our model of collecting

FIGURE 4. Patch collection model using a hidden connectivity between
the CVE info page and the CVE patch page.

TABLE 1. Applicable data sources by the link type.

patches using a hidden connectivity between the CVE info
page and the CVE patch page. For indirect patch links,
some websites provide hints (e.g., commit ID) leading to
CVE patches; this means that there is a hidden connectivity
between those websites and CVE patches. Accordingly, we
collect corresponding CVE patches by scanning data sources
with the obtained hints. For invisible patch links, we consider
the CVE ID keyword as a hidden connectivity between the
CVE patch and the CVE info page. Therefore, to collect
corresponding CVE patches, we utilize the CVE ID keyword
to scan the data sources.

However, not all data sources can apply all link types to
collect security patches. Because only six CVE vulnerabili-
ties were referenced in the case of Q&A sites, it is difficult
to apply the collection method with a direct or indirect patch
link. In addition, it is rare to provide patches directly to the
issue trackers and therefore we could not apply the collection
method with a direct patch link in the issue tracker cases.
Therefore, we summarize the applicable data sources by the
link type in Table 1.

2) DIRECT PATCH LINK COLLECTION
We first introduce a method for collecting security patches
with direct patch link. Given a CVE info page as an input, we
collect the CVE patch page by checking whether it is a direct
patch link hosted on Git platforms (e.g., Github, Gitlab, Cgit
and Gitweb). Here are the steps for collecting patches:

(1) Search the URL in reference links: We first col-
lect commit URLs with the keyword ‘‘commit’’
and the name of Git platforms. For example, the
CVE-2020-14147 info page provides the CVE patch
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page of GitHub with a direct link with the URL
‘‘https://github.com/redis/redis/commit/ef764dd’’.

(2) Download the repository in a local environment: This
step is a prerequisite for extracting security patches.
To download the repository into the local environment,
the command git clone repository_url is required.

(3) Extract the diffs: We then extract the diffs related to
the retrieved commits using the command git show com-
mit_id on a specific cloned repository. This command
shows the security patch codes in a unified diff format
and commit messages.

While security patches can be extracted by crawling the
URL retrieved in the first step, some platforms such as
GitWeb require preprocessing to extract the patches (e.g.,
replacing with a URL that can be crawled in the form of plain
text). Therefore, we propose the steps to extract a security
patch using Git commands.

3) INDIRECT PATCH LINKS COLLECTION
To collect security patches with indirect patch link, we pro-
pose an in-depth scanning method that tracks the CVE patch
page by analyzing the website URL, given the CVE info page.
As explained in Section III-B1, issue trackers (e.g., Bugzilla
and GitHub issue page) and self-managed repositories are
considered in this phase. Given a CVE info page as an input,
the security patches are collected as follows:

(1) Crawl website URLs provided by the CVE info page:
To analyze the website URL, we first crawl the HTML
contents of the URL. We crawl the URL by requesting
it using a simple crawler (e.g., BeautifulSoup1).

(2) Extract information addressing the CVE patch page:
Next, we find the information that may link to the
CVE patch page. There are two cases of collecting
information:
(2-1) Case with a direct link (e.g., Git commit URL) of

the CVE patch page (see Figure 3). If the direct
patch link is identified in the website contents, we
can apply the same method for the collection with
direct patch links (see Section III-B2).

(2-2) Case as a hint to the CVE patch page. We collect
information that can be used to find patch com-
mits on the website. For example, Mozilla records
bug IDs in the corresponding patch commit mes-
sages. Therefore, we can leverage the bug IDs to
find security patches.

(3) Search the patch commits and extract diffs: We then
search the patch commits with the information extracted
from the previous steps. For example, if a bug ID is
detected through Step (2-2), we can extract the corre-
sponding security patches by executing the command git
log –grep=‘bug ID’.

1https://pypi.org/project/beautifulsoup4/

Since we do not know what information is leveraged to
find the security patch commits in Step (2-2), we conducted a
preliminary investigation of the information to be extracted.

FIGURE 5. Example of a case where security patches can be obtained
externally with information in the websites provided by the CVE info page.

As an example, we introduce CVE-2020-11655, a vul-
nerability that provides a patch to the SQLite software (see
Figure 5). Although the source code of SQLite is hosted on
GitHub, vulnerabilities of SQLite are managed by its own
management system. By leveraging the ID (i.e., SHA3-256)
that is provided in the website URL, we searched for rele-
vant commits that contain such ID in the commit messages.
Finally, we can extract the diffs using the retrieved commit.

4) INVISIBLE PATCH LINKS COLLECTION
To collect patches with invisible links, we leveraged our pre-
vious work, Dicos [7], which is an accurate approach for
discovering insecure code snippets in Stack Overflow posts.

FIGURE 6. Example Stack Overflow post (#122721). We divide a post into
three parts: question, answer, and comments; the answer is further
subdivided into code snippet and description (i.e., narrative part
excluding code snippets).

By leveraging Dicos, we can collect security patches with
missing links in the Q&A sites. Q&A site posts often pro-
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vide only part of code snippets, in the form of simple code
examples. Therefore, rather than containing a vulnerability
right away, it often contains a security flaw that can lead to
a vulnerability. We thus aim to broaden the detection scope
to cover such insecure posts, including vulnerable code snip-
pets. The key idea of Dicos for discovering insecure code
snippets is leveraging user discussions in Stack Overflow.
In general, an answerer edits their code snippets when they
notice that their code has a flaw, such as a security issue and
thereafter, they leave all the edit logs in their post. Inspired by
this process, Dicos analyzes the change history of the post,
as it provides significant hints for discovering insecure code
snippets. In a nutshell, Dicos first extracts the change history
(i.e., diffs between the oldest and latest revisions) from the
Stack Overflow post for the description, code snippets, and
comments (see Figure 6). Dicos then discovers insecure code
snippets by analyzing whether the extracted diffs are intended
to fix a security issue based on the selected features (i.e.,
security-sensitive APIs, security-related keywords, and con-
trol flow information).

In addition, we collect security patches with invisible patch
links in the repositories and issue trackers by leveraging
Dicos. Here, we consider a commit as the same concept as
the change history of Dicos and therefore analyze the commit
message and diff of the source codes. Since the CVE ID
can be a hint for finding relevant commits, we search patch
commits by analyzing whether the commit message contains
‘‘CVE-20’’ (the command git log –grep=‘CVE-20’ is used).
The algorithm for the patch collection methods is given in
Algorithm 1.

IV. FINDINGS
In this section, we provide the analysis results related to the
following four questions:

Q1. How do we implement our approach for constructing
xVDB? (Section IV-A)

Q2. How many security patches have we collected?
(Section IV-B)

Q3. What are the characteristics of the collected security
vulnerabilities? (Section IV-C)

Q4. How is our approach applied in the real world?
(Section IV-D)

A. IMPLEMENTATION OF OUR APPROACH
Based on the methodology presented in Section III, we con-
structed xVDB collected from the repositories, issue track-
ers, and Q&A sites. For repositories and issue trackers, we
targeted the C, C++, Java, JavaScript, Python, and Go lan-
guages because our additional experiment affirmed that these
six languages belong to the top languages of the patches
reported as CVE (which account for approximately 77% of
all CVE patches). For Q&A sites, especially Stack Overflow,
we targeted C, C++, and Android posts because the reuse
of small pieces of code is prevalent in the software [6], [10],
[25], [26]. Note that the design of our approach can be applied
to any programming language.

Algorithm 1: Algorithm for Collecting Security Patches
Input: V, C, R
// V: Vulnerability, C: CVE info
page,
// R: Repository reporting V
Output: P
// P: Security patch for V

1 procedure ExtractingPatch
(
V, C, R

)
2 Ref← References( V, C)
3 for URL in Ref do
4 if (‘‘git’’ in URL) and (‘‘commit’’ in URL)

then
// Collect P with direct
patch links

5 P← Crawl( URL)

6 else
// Collect P with indirect
patch links

7 if GitURL in Visit( URL) then
8 P← Crawl( GitURL)

9 else if H in Visit( URL) then
// H: Hints for detecting
patches (e.g., Commit ID
or Bug ID)

10 for Cm in R do
// Cm: Commit

11 P← GetPatchCommit( Cm,
H)

// Collect P with invisible patch
links

12 for Cm in R do
13 if ‘‘CVE-20’’ in Cm then
14 if (IsControlFlowChanged( Cm) or

IsSecurityAPIChanged( Cm)) then
15 P← Cm

16 return P

Our approach was implemented on approximately 1,000
lines of Python code, excluding the external libraries (e.g.,
BeautifulSoup). We used Dicos, an open-source tool,
to collect security patches with invisible patch links on the
Q&A sites. The source code for Dicos is available at https:
//github.com/hyunji-hong/DICOS-public.

B. COVERAGE OF xVDB
In our experiments, we collected 12,432 CVE patches from
the repositories and issue trackers, and 12,458 insecure posts
from the Q&A sites. To demonstrate that our approach has
higher coverage than those proposed in previous approaches,
we compared the security patches in xVDB with those of
existing approaches.
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TABLE 2. Coverage of xVDB.

1) METHODOLOGY FOR COMPARISON
We reviewed several approaches that attempted to collect
security patches [10], [11], [12], [18], [21], [23], [25].
We classified the number of security patches collected by
existing approaches according to the link type we defined.
Note that we did not consider the unknown security patch dis-
covery and therefore, we performed comparison experiments
for the known security patch discovery. Table 2 shows the
results of the experiments.

2) RESULT ANALYSIS
We confirmed that our approach significantly outperformed
existing approaches, as we could collect at least four times
more than the other approaches and even collected insecure
posts from the Q&A sites.

We first confirmed that CVE patches with a direct patch
link were collected more than the other approaches. Although
we considered various programming languages, most patches
were for C and C++ languages (accounting for 81% of the
total; details are presented in Section IV-C4). Considering
that most of the existing approaches only collected C/C++
security patches, it can be seen that our approach still col-
lected more patches; this is because, existing approaches
mainly considered GitHub among the various Git platforms.

Although most approaches did not cover the collection
methods proposed in our approach (e.g., collecting indirect
and invisible patch links), VUDDY [10] and V0Finder [25]
collected patches with invisible patch links. We confirmed
that VUDDY and V0Finder collected more security patches
(i.e., 3,551 and 2,425 CVE patches, respectively) than xVDB.
This is because they collected security patches by search-
ing for the keyword ‘‘CVE-20’’ in commit messages, which
may easily produce false positives. However, our approach
reduces such false positives by analyzing whether patches
contain ‘‘CVE-20’’ as well as control flow changes or
security-sensitive API changes (see Section III-B4).

Figure 7 represents the comparison results of xVDB and
the existing approach [25] by each link type. Here, some
patches coexist on multiple link types, thus we consider the

FIGURE 7. Comparison results of xVDB and the existing approaches [25]
by link type.

following priority: (1) direct, (2) indirect, and (3) invisible.
As a result, 6,387 CVE patches (51%) are categorized as the
direct link, 2,358 CVE patches (19%) belong to the indirect
link, and the remaining 3,687 CVE patches (30%) are clas-
sified as the invisible patch link. We selected V0Finder [25],
which collected the most security patches (i.e., 5,671 security
patches) among existing approaches, as a comparison target.

From our experiments, our approach improved 1.9 times
and 1.5 times of the direct link and invisible links stored in
V0Finder, respectively; Our approaches collected 2.1 times
more security patches than V0Finder.

As shown in Figure 7 and Table 2, most existing
approaches could cover only some parts of direct and invisible
patch links, resulting in collecting fewer patches than we
stored in xVDB; this result demonstrates that our approach
has higher coverage compared to the existing approaches.

C. CHARACTERISTICS OF PATCHES ON xVDB
To identify the characteristics of security patches in xVDB,
we examined security patches from six perspectives. To state
the conclusion first, we introduce the key findings:

(1) Many security patches that urgently need to be patched
were collected in xVDB. (Section IV-C1)

(2) Many security patches in xVDB were classified as types
that require boundary checking. (Section IV-C2)

(3) More than half of the security patches were collected via
indirect and invisible patch links. (Section IV-C3)

(4) Most security patches (81%) were related to C/C++
languages. (Section IV-C4)

(5) The reference site where themost patches were collected
was GitHub, but a considerable number of security
patches were collected via issue trackers. (Section IV-
C5 and Section IV-C6)

1) SEVERITY OF CVE PATCHES
To identify how critical the CVE vulnerabilities collected
in xVDB are, we used the Common Vulnerability Scoring
System (CVSS), which is a standard vulnerability metric.

Figure 8 represents the distribution of CVSS scores in
xVDB (specifically, we measured with CVSS version 2).
Since the scores are represented to one decimal place, we
aggregated the total number of CVE within the range (e.g.,
score 7.8 is counted as score 7). As shown in Figure 8,
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FIGURE 8. CVSS distribution of CVE patches in xVDB.

we collected vulnerabilities with various levels of severity,
rather than focusing on a specific level. Most vulnerabilities
in xVDB are distributed in the medium level (i.e., low: 0 to
3.9, medium: 4 to 6.9, and high: 7 to 10).

FIGURE 9. Comparison results of vulnerabilities in xVDB and
vulnerabilities disclosed by CVE MITRE [14] based on CVSS (logarithmic
scale).

We also compared our results with the vulnerabilities dis-
closed by CVE MITRE [14] (see Figure 9); we confirmed
that 6% to 7% vulnerabilities were collected for each severity
level. This further represents that the reason most vulnerabil-
ities in xVDB are distributed at the medium severity level is
that a large portion of disclosed vulnerabilities also belong
to the medium severity level. As 89% of the security patches
(11,008) collected in xVDB showed medium or high severity,
we determinedmany vulnerabilities that needed to be patched
urgently in the real-world software ecosystem were collected
in xVDB.

2) TYPES OF CVE PATCHES
To identify the type of each CVE patch, we used Common
Weakness Enumeration (CWE) assigned to each CVE, which
is a standard for software weakness types. With the collected
CVE patches, we simply counted the number of CWE, and
confirmed that 202 unique types of CWE were detected in
xVDB. Table 3 represents the top 10 CWE types in xVDB.

From the results, we confirmed that various types of vul-
nerabilities exist in xVDB. The most frequently appear-
ing type is ‘‘Buffer Overflow’’, which can cause a system
crash and therefore, requires additional boundary checking
or avoidance of using standard library functions (e.g., scanf
and gets). Furthermore, we confirmed that ‘‘Out-of-bounds
Write and Read’’ also account for a large part, and they also
require additional boundary checking.

TABLE 3. Top 10 CWE distribution discovered in xVDB.

3) YEAR DISTRIBUTION OF CVE PATCHES
We then investigated the distribution of years in which secu-
rity patches were disclosed from 1999 to 2022. The results
are depicted in Figure 10.

FIGURE 10. Year distribution of CVE patches in xVDB. CVE patches
collected via direct, indirect, and invisible links and total CVE patches in
xVDB are represented.

Although direct links are the most collected link type each
year, indirect and invisible links also accounted for a large
proportion of the total each year. As an example, in 2017,
only 270 CVE patches could be collected when collecting
patches via direct links. However, since we covered even indi-
rect and invisible links, we could collect 2,237 CVE patches.
This result affirmed that our approach could collect more
security patches than the existing approaches that collected
only via direct patch links.

FIGURE 11. Cumulative graph of CVE patches collected by three link types
by year (direct, indirect, and invisible patch links).

The cumulative graph by year of each link type is depicted
in Figure 11. When examining only the ratio of link types,
we can confirm that the proportion of direct patch links
is gradually increasing. This indicates that as developers
become more concerned with security, more CVE vulner-
abilities are being reported and managed with direct patch

85058 VOLUME 10, 2022



H. Hong et al.: xVDB: High-Coverage Approach for Constructing a Vulnerability Database

links. Nevertheless, in most cases of each year, approximately
half of the vulnerabilities could be collected via invisible or
indirect patch links. Therefore, this suggests the need for an
approach that even collects hidden security patches, such as
the approach introduced in this paper.

When compared with the total number of reported CVEs
disclosed via the CVE MITRE [14], we confirmed that our
approach could collect an average of 6% of security patches
for each year. For example, in 2021, we found 1,526 security
patches (7.5%) among the 20,168 disclosed vulnerabilities.
Although this ratio does not seem large, in fact, considering
that the proportion of vulnerabilities that release patches is
not very high, this is a sufficiently significant number.We dis-
cuss this in Section VI.

4) LANGUAGE DISTRIBUTION OF CVE PATCHES
Next, we analyzed the language distribution of security
patches in xVDB.

FIGURE 12. Language distribution of CVE patches in xVDB.

As shown in Figure 12, C and C++ accounts for a large
portion (81%) of vulnerabilities in xVDB, i.e., 10,067 out
of 12,432 security patches. While many existing approaches
focused only on the C and C++ languages for constructing
the vulnerability database, we confirmed that other languages
accounted for approximately 19% of the total CVE patches
(i.e., accounting for 2,365 CVE patches). Therefore, we need
a technique that can collect security patches of various lan-
guages, and in that regard, we can claim the superiority of our
approach, which is not limited by programming language.

5) DATA SOURCE DISTRIBUTION OF CVE PATCHES
We further analyzed data sources for security patches in
xVDB, to identify which data sources the patches were col-
lected from.

We confirmed that 12,432 CVE patches were collected
from the repositories and issue trackers, and 12,458 posts
were collected from the Q&A sites (see Figure 13). Most
of the CVE patches were collected from repositories (9,663
patches, 78% of the total), and 4,786 patches were collected
from issue trackers. We also confirmed that 42% (2,017)
of the patches collected from the issue tracker were identi-
cally collected from the repositories. This is because a con-
siderable amount of vulnerabilities are reported to the issue
trackers before being reported to CVE MITRE [14] and thus

FIGURE 13. Illustration for the coverage of the data sources (repositories,
issue trackers, and Q&A sites).

patches are delivered to the repositories and issue trackers
simultaneously.

As an example, the security patch of CVE-2020-35492
was collected from both the repository and the issue tracker.
This vulnerability is related to Cairo software, an open source
graphics library, and causes a stack buffer overflow. At first,
a security issue was reported on the issue tracker [2] on
November 2020. A corresponding patch was released to the
Cairo repository [3] on December 2020, and thereafter the
patch was provided as a direct link to the issue tracker. This
issue was reported and CVE issued on March 2021 in CVE
MITRE [14] with the issue tracker URL; and after a month,
the CVE reference site was modified to contain the direct
patch commit url as well.

However, it is worth noting that 58% (2,769) of CVE
patches collected from issue trackers could not be collected
in the repositories via direct and invisible patch links. This
suggests that issue trackers should also be considered as tar-
get data sources, as we can collect a significant number of
patches.

6) REFERENCE SITE DISTRIBUTION OF CVE PATCHES
Finally, to identify which reference sites provide security
patches, we investigated the reference site distribution of
the CVE patches by analyzing 12,432 security patches in
xVDB. Note that one CVE may contain multiple security
patches. We collected the URLs from which CVE patches
can be extracted and classified them into the eight categories.
Figure 14 represents the measurement results.

FIGURE 14. Distribution of reference sites of CVE patches in xVDB.

Not surprisingly, GitHub provided the highest number
of security patches; this is because many OSS projects
are hosted via GitHub, and thus security issues are mainly
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fixed with GitHub commit. Moreover, our experimental
results show that issue trackers (e.g., Android, Mozilla,
and Chromium) and self-managed repositories (e.g., SQLite)
account for a large proportion. This indicates the need to
collect patches from various data sources, which reveals the
efficacy of our approach.

D. APPLICATION
xVDB has been serviced online for free (at IoTcube [8]) since
2016. IoTcube provides several tools for detecting vulnerabil-
ities. Specifically, xVDB is leveraged as a database to detect
vulnerable code clones, in conjunction with VUDDY [10].
Since 2016, over 20K users including commercial software
developers, open-source committers, and IoT device manu-
facturers have tested our platform. Figure 15 shows the main
page of the IoTcube platform.

FIGURE 15. Main page of IoTcube.

IoTcube provides the statistics of xVDB; vulnerability
statistics by language, vulnerability statistics by repository,
and vulnerability statistics by year. Figure 16 illustrates the
vulnerability statistics by language and year, and Figure 17
shows the vulnerability statistics by repository in xVDB.

FIGURE 16. Vulnerability statistics by language and year on IoTcube
(which is shown in the VDB menu of IoTcube).

To test vulnerable code clone detection technique in
IoTcube, users first generate hash values of functions from
the target software, using the ‘‘Hmark’’ tool, i.e., the imple-
mentation tool of VUDDY [10]; the function hash values of

FIGURE 17. Vulnerability statistics by repository on IoTcube (which is
shown in the VDB menu of IoTcube).

FIGURE 18. Result page on IoTcube. IoTcube detected 1,016 vulnerable
code clones in the Linux software.

FIGURE 19. Statistics for IoTcube white box testing (which is shown in the
Statistics menu of IoTcube).

the target software are embedded in the analysis file. There-
after, users upload the analysis file to the IoTcube server.
Finally, the IoTcube server gives the vulnerability detection
reports in the platform (see Figure 18). We provide sufficient
information for the detected vulnerabilities: the paths where
the vulnerabilities were detected, the top CVE occurrences,
the origin software of the detected vulnerabilities, distribu-
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tion by year, CVSS, CWE, and tree view for vulnerable
function paths.

Figure 19 depicts the statistics for the IoTcube white box
testing (i.e., vulnerable code clone detection, VUDDY [10]).
We confirmed that 26,464 users tested the tool, and approx-
imately one million vulnerable code clones were detected
from 83 million files since the release of IoTcube in 2016.
We further confirmed that CWE-119 (i.e., Buffer Overflow),
CWE-264 (i.e., Access Control Error), and CWE-399 (i.e.,
Resource Management Error) were the top three CWE types.

V. RELATED WORKS
In this section, we introduce a number of related works.

A. PUBLIC VULNERABILITY DATABASE
There are various public vulnerability databases [4], [13],
[14], [15], [19] that can freely search cybersecurity flaws
assignedwith a CVE ID. Such databases can be classified into
national-managed databases and private company-managed
databases. Many developers and security engineers use these
databases because new CVE are updated via CVE MITRE,
data feed [16] for the CVE list can be obtained from NVD,
and CVE Details provides statistics on various criteria of
CVE.

In addition, several companies including Snyk [19] and
Mend [13] (known as WhiteSource) provide company-
managed vulnerability databases. Compared to the national-
managed databases, they further provide details about which
version of the package manager is vulnerable to CVE.

However, such vulnerability databases do not fully pro-
vide information to address security threats caused by the
vulnerabilities. Specifically, they do not essentially provide
code-level security patches for all the vulnerabilities. There-
fore, our approach provides vulnerable and patched code,
making it effective in mitigating security threats at the
source code level (we discuss this application in detail in
Section VI).

B. COLLECTING KNOWN SECURITY PATCHES
Several approaches (e.g., [11], [12], [18], [21], [22], [23],
[25]) have attempted to construct vulnerability databases
by collecting security patches. However, most of the exist-
ing approaches only covered security patches that could
be collected from repositories, especially Git (e.g., [11],
[12], [18], [21], [22], [23]), as we discussed throughout this
paper. In addition, they only focused on collecting security
patches with direct patch links, i.e., missing many security
patches with indirect and invisible patch links. Although
VUDDY [10] and V0Finder [25] considered the collection
method with an invisible patch link by searching for the
keyword ‘‘CVE-20’’ in the commit messages, the method
of collecting with only keyword features may cause many
false positives; note that our approach overcome this problem
by analyzing whether a patch contains ‘‘CVE-20’’ as well
as control flow changes or security-sensitive API changes.
In summary, existing approaches failed to collect a sufficient

number of security patches owing to the presence of lim-
ited data sources and shallow scanning problems, while our
proposed approach could collect much more security patches
with higher patch collection accuracy.

VI. DISCUSSION
A. STORING VULNERABLE AND PATCHED CODES
To easily detect vulnerabilities, it is necessary to store secu-
rity patches in a processed form. Therefore, we consider the
unit for storing and the index to be used for vulnerability
detection.

We determined that the function-level granularity unit is
the most appropriate when using xVDB for vulnerability
detection as the advantages of using the function unit (i.e.,
high performance and scalability) have been already veri-
fied in existing approaches [1], [10], [26], [27]. The method
of extracting vulnerable and patches functions from secu-
rity patches is a simple task that has been introduced in
many studies. Using the index values of the security patch
(e.g., line #3 in Listing 1), we can access the file before
(resp. after) applying the patch; we then extract the vulnerable
(resp. patched) function from the accessed source file.

Although these collected vulnerable and patched functions
can be directly utilized for vulnerability detection, most exist-
ing approaches use the hash value of the function the scal-
ability (e.g., [10], [25], [27]). With the extracted vulnerable
and patched functions (normalized with removing comments,
tabs, linefeed, and whitespaces, which are easy to change but
do not affect program semantics), we created a hash index to
be used for vulnerability detection. Here, three mechanisms
can be performed for creating the hash index: generating hash
values for (1) exact matching, (2) abstract matching, and (3)
similarity matching.

(1) Hash for exact matching: A hash value extracted from
the normalized function body of the original function.
If the target program contains the same functions (i.e.,
same characters) with a vulnerable function, it can be
detected.

(2) Hash for abstract matching: A hash value extracted
from the normalized function body of the abstracted
function (every occurrence of the parameter, variable,
and data types replace symbols [10]). Even if the target
function slightly changes with the parameters, variables,
and data types, the function can be detected.

(3) Hash for similarity matching:A hash value that can be
used for similarity comparisons. If the target program
contains the similar functions with a vulnerable func-
tion, it can be detected using this type of hash value (it
can be processed using locality sensitive hashing algo-
rithms).

When hash values of vulnerable and patched functions
are generated through the aforementioned processes, security
patches collected by xVDB can be easily utilized for vulner-
ability detection.
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B. SURVEY OF THE CVE PATCH DISTRIBUTION
To know the status of the CVE patch distribution, we con-
ducted two additional experiments: (1) the distribution of
OSS and its patches for the affected software, and (2) the
proportion of CVE vulnerabilities that can be covered by our
methods.

To represent the distribution of OSS and the corresponding
patches in NVD, we examined 220 affected software that
reported more than 100 CVE. With 220 affected software,
we classified them into two groups: OSS and commercial
software. To determine which software is OSS, we consid-
ered two criteria: (1) the case that can be extracted reposi-
tory URLs from the NVD references and (2) the case that
can extract repository URLs from external references (e.g.,
Wikipedia [24], vendor website, and repositories). While the
first criteria can be automatically identified, the cases of the
second criteria were manually checked because they cannot
be easily automated. Note that we considered software whose
source codes are fully opened as theOSS, and a partially-open
software was used as a commercial software. With these
results, we measured the total number of CVE.

FIGURE 20. Status of the CVE patch distribution: (a) and (b) show the
distribution of OSS and its patches for the affected software, and
(c) depicts the proportion of vulnerabilities that can be covered by our
methods.

Among the 220 software, we confirmed that 91 (i.e., 41%
of the total) were OSS; 67 software (i.e., 30% of the total)
were detected by the first criteria, and we manually identified
24 software (i.e., 11% of the total) as open source from exter-
nal references (see Figure 20 (a)). The cumulative number
of CVE vulnerabilities reported by these 91 OSS projects
was 29,537 (42% of all CVE vulnerabilities reported by the
220 affected software programs).

We targeted OSS to collect security patches because the
vulnerabilities related to commercial software and hardware
tend not to disclose their security patches. In addition, even
in the case of OSS vulnerabilities, there are still many vul-
nerabilities that do not disclose security patches. Neverthe-
less, our approach could cover 7,941 CVE (27%) vulnera-
bilities among the 29,537 CVE vulnerabilities reported by
the 91 OSS projects. In particular, the direct link collec-
tion method covered 3,836 CVE patches (13%), the indirect

link collection method collected 3,359 CVE patches (11%),
and the invisible link collection method gathered 2,612 CVE
patches (9%). This is clearly the result of collecting more
security patches compared to the existing approaches, and
once again, this emphasizes the importance of collecting indi-
rect and invisible patch links.

We failed to collect the remaining 21,596 CVE patches
(73%) because they did not exhibit any hidden connectiv-
ity (defined in this paper) between the CVE info page and
the CVE patch page. Instead of releasing security patches,
their CVE info pages mainly suggest resolving vulnerabilities
through OSS version updates. Since more and more security
patches are being provided through direct links, the number of
patches our approach can collect will also gradually increase.
Nevertheless, developers need to provide a security patch at
the time of reporting a vulnerability, so that other developers
or security analysts canmore clearly understand the cause and
solution of the vulnerability.

VII. CONCLUSION
As cybersecurity attacks aimed at OSS have exponentially
grown, the need for a large-scale vulnerability database,
which is effective in detecting, is also growing. In response,
we constructed a large-scale patch database for known vul-
nerabilities, called xVDB. Our experimental results affirmed
that our approach has a much higher coverage than existing
techniques in terms of collecting security patches, as it can
collect security patches at least four times more than those
collected in existing approaches.

xVDB can be used to support vulnerability detection. The
security patches collected in xVDB can be used to detect
vulnerable code clones contained in real-world software,
and this vulnerability detection approach has been serviced
since 2016 through the IoTcube platform. Equipped with the
patch information provided by xVDB, developers can address
potential threats caused by propagated vulnerabilities, render-
ing a safe software ecosystem.

As a future extension, we will devise a patch collection
method for security patches that do not have hidden connec-
tivities between the CVE info page and the CVE patch page.
For example, a patch for fixing a CVE vulnerability may not
contain any hints (e.g., CVE ID) about the vulnerability in its
commit message. We are considering a method for collecting
security patches based on the description information of the
CVE info page.
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