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Abstract
We present V1SCAN, an effective approach for discovering
1-day vulnerabilities in reused C/C++ open-source software
(OSS) components. Reusing third-party OSS has many bene-
fits, but can put the entire software at risk owing to the vul-
nerabilities they propagate. In mitigation, several techniques
for detecting propagated vulnerabilities, which can be clas-
sified into version- and code-based approaches, have been
proposed. However, state-of-the-art techniques unfortunately
produce many false positives or negatives when OSS projects
are reused with code modifications.

In this paper, we show that these limitations can be ad-
dressed by improving version- and code-based approaches
and synergistically combining them. By classifying reused
code from OSS components, V1SCAN only considers vulner-
abilities contained in the target program and filters out unused
vulnerable code, thereby reducing false alarms produced by
version-based approaches. V1SCAN improves the coverage
of code-based approaches by classifying vulnerable code and
then detecting vulnerabilities propagated with code changes in
various code locations. Evaluation on GitHub popular C/C++
software showed that V1SCAN outperformed state-of-the-art
vulnerability detection approaches by discovering 50% more
vulnerabilities than they detected. In addition, V1SCAN re-
duced the false positive rate of the simple integration of ex-
isting version- and code-based approaches from 71% to 4%
and the false negative rate from 33% to 7%. With V1SCAN,
developers can detect propagated vulnerabilities with high
accuracy, maintaining a secure software supply chain.

1 Introduction

Open-source software (OSS) reuse has become an indispens-
able trend in software development [9, 36, 41]. In addition to
the benefits of using existing functionalities, reusing OSS in-
creases the reliability of software because OSS is often more
exposed to verification by multiple parties.
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However, improper OSS reuse may compromise the secu-
rity of the entire system (e.g., vulnerability propagation [9,
14, 15, 34]). To obviate the threats imposed by unmanaged
OSS reuse, many approaches have been proposed for detect-
ing vulnerabilities in OSS components. These approaches are
mainly classified into version- and code-based techniques.

• A version-based approach discovers vulnerabilities by
identifying OSS versions [9, 36, 40]. It determines
whether the versions contain known vulnerabilities such
as Common Vulnerabilities and Exposures (CVE).

• A code-based approach detects propagated vulnerabili-
ties by identifying codes that are syntactically or seman-
tically similar to vulnerable code [12, 14, 34, 37].

Although resolving vulnerabilities is crucial for securing
software, existing version- and code-based approaches easily
produce false positives or negatives, resulting in impeding an
effective vulnerability management process. This is primarily
owing to the recent tendency of developers to typically reuse
OSS with code or structural modifications [9, 36].

Limitations of existing approaches. Existing version-based
approaches (e.g., [9, 36, 40]) easily produce false positives be-
cause they fail to consider the impact of modified OSS reuse
on vulnerability propagation, and thus misinterpret the unused
vulnerable code as still being present in the target program. In
contrast, existing code-based approaches (e.g., [12,14,34,37])
easily report false negatives when the syntax of the vulner-
able code is modified. Moreover, because these approaches
focus on a specific granularity (e.g., function units), they miss
vulnerabilities that exist outside the selected granularity.

Our approach. To overcome their shortcomings, we present
V1SCAN, a novel approach for the precise and comprehensive
discovery of 1-day security vulnerabilities propagated as a
result of the reuse of C/C++ OSS components.

We devise a new way to combine version- and code-based
approaches to take full advantage of their strengths and avoid
weaknesses. The main idea of V1SCAN, which is significantly
distinguishable from existing approaches, is to detect propa-
gated vulnerabilities using the code classification techniques.



Given a target program, V1SCAN first detects vulnerabili-
ties based on the identified OSS versions. To focus only on
reused vulnerabilities, V1SCAN uses a reused code classifica-
tion technique that divides reused OSS functions into three
groups: exactly reused, changed, and unused. By filter-
ing out unused and repaired vulnerable functions, V1SCAN
reduces false alarms of the existing version-based approaches.

V1SCAN complements vulnerability detection results us-
ing a code-based approach. To expand vulnerability detec-
tion coverage, V1SCAN first clarifies vulnerability locations
(function, structure, macro, or variable) using a vul-
nerable code classification technique, and then detects propa-
gated vulnerabilities for each location. Here, V1SCAN only
considers the core lines directly related to the vulnerability to
counter code changes caused by modified OSS reuse, thereby
addressing false negatives of existing code-based approaches.

Finally, V1SCAN confirms the propagated vulnerabilities
in the target program by consolidating the results of the im-
proved version- and code-based approaches.

Evaluation. For the experiment, we collected 4,612 CVE
patches from the National Vulnerability Database (NVD) [22]
and gathered Common Platform Enumeration (CPE) [21] on
137,892 CVE vulnerabilities. We evaluated V1SCAN using
popular C/C++ software on GitHub.

When we applied the V1SCAN, MOVERY [34], and
V0Finder [35] to the selected ten target programs, V1SCAN
detected 50% more vulnerabilities (137 vulnerabilities) than
the existing approaches, achieving a precision of 96% and
a recall of 91% (see Section 5.1). It is remarkable that
V1SCAN could reduce the false negative rate of MOVERY and
V0Finder from 40% and 55% to 9%. Furthermore, V1SCAN
could discover more propagated vulnerabilities than the com-
bined results of existing version- [14] and code-based [36]
approaches, while reducing the false positive rate from 71%
to 4% and the false negative rate from 33% to 7% (see Section
5.2). Moreover, when we applied V1SCAN to 4,434 popular
C/C++ software (ranging from 1K to 20M lines of code),
V1SCAN could detect vulnerabilities within 20 seconds for
each software (excluding preprocessing time), indicating that
V1SCAN is sufficiently fast for practical use (see Section 5.3).

Contributions. We summarize our contributions below.
• We propose V1SCAN, a new approach for precisely de-

tecting 1-day vulnerabilities in a target program. The
key technical contribution is the effective integration of
version- and code-based approaches by leveraging the
classification of reused and vulnerable code.

• We examined the manner in which modified OSS reuse
affects the vulnerability discovery process, and propose
an effective solution for detecting vulnerabilities in mod-
ified C/C++ OSS components.

• V1SCAN discovered 137 vulnerabilities in ten target
programs with 96% precision and 91% recall, thereby
outperforming existing approaches.

2 Terminology and motivation

2.1 Basic terminology
We first clarify the following terms used throughout the paper.

• OSS reuse. This refers to the process of utilizing all or
some of the OSS functions (e.g., copying and pasting of
functions from third-party OSS projects) [9, 36].

• OSS component. This refers to an entire OSS project or
sometimes a portion of an OSS codebase that is reused
in a target program [36].

• OSS version. We define that an OSS version follows
the three-component semantic versioning notation with
major.minor.patch by default [7].

• 1-day (or N-day) vulnerability. This refers to a vul-
nerability that is known to responsible developers and
for which a corresponding security patch has been re-
leased [9, 38]. These vulnerabilities can propagate to
other software due to OSS reuse, compromising the se-
curity of the entire system.

2.2 Code classification
For precise vulnerability detection, we leverage the classifi-
cation of reused and vulnerable code. This is because false
positives and negatives may occur in vulnerability discovery
if various types of reused and vulnerable code are not properly
classified and considered (see Section 2.3). Figure 1 depicts
the code classification defined in this paper.

Reused code classification. When developers reuse an OSS
project, they often modify the code of the original OSS
project [9, 36]. We classified the types of OSS codes that
were reused into the following three categories, according to
the extent of modification of the code.

• Exactly reused (E): OSS code (e.g., functions or files)
is reused without any code changes.

• Changed (C): OSS code is reused with code changes.
• Unused (U): OSS code is not reused (not included in

the codebase of the target program).

Vulnerable code classification. Security vulnerabilities can
exist in various locations in the source code. Specifically, we
consider the following four code locations.

• Function (F). e.g., void main (...) {...}
• Structure (S). e.g., struct oss {...};
• Macro (M). e.g., #define ...
• Variable (V). e.g., const int ...;

When we examined 4,612 C/C++ security patches, code
patches applied to the selected four code locations accounted
for over 97% (see Section 4.3). Therefore, we determined
that considering these four code locations could cover C/C++
security patches comprehensively.
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Figure 1: Depiction of the code classification.

2.3 Problem statement
In this paper, we focus on the problem in which existing
version- and code-based approaches fail to precisely detect
1-day vulnerabilities in target software, leaving threats un-
mitigated and making the vulnerability management process
ineffective. Two main issues with the existing version- and
code-based approaches are summarized as follows.

• Version-based approaches produce many false positives
because they do not consider the modification of reused
vulnerable code.

• Code-based approaches report many false negatives be-
cause they do not consider code locations in which vul-
nerabilities exist.

First, although 57% of the C/C++ OSS codebase is changed
or excluded from OSS reuse in practice [36], existing version-
based approaches (e.g., [9, 36, 40]) fail to consider the impact
of modified reuse on vulnerability propagation. Even if the
vulnerable code is excluded during OSS reuse, or is repaired
by backporting the security patch, existing version-based ap-
proaches fail to filter out this and produce false alarms.

Moreover, version-based approaches can produce false re-
sults when component versions are misidentified. Because
OSS codes often undergo modifications during the reuse pro-
cess, it is challenging to map one version to the entire code-
base of the reused component (e.g., code from multiple OSS
versions can be mixed) [36]. Leveraging a Software Bill of
Materials (SBoM) [29] also presents challenges, as the cur-
rent SBoM for C/C++ mostly lacks consideration for modified
reuse; it maps a single version to an OSS component and can
thus produce false results in vulnerability discovery.

On the other hand, existing code-based approaches (e.g.,
[12, 14, 34, 37]) report many false negatives because they
mainly focus on detecting propagated vulnerabilities within a
specific granularity (e.g., function units). Furthermore, they
do not precisely identify propagated vulnerable code with
various syntaxes (e.g., propagated with code changes).

2.4 Motivating example
We attempted to discover 1-day vulnerabilities in ReactOS
v0.4.13, which is a free Windows-compatible operating sys-
tem. We used V1SCAN, version-based, and code-based ap-
proaches and then examined each vulnerability detection re-
sult. Table 1 summarizes the vulnerability detection results.

Table 1: Vulnerability detection results for ReactOS using the
V1SCAN, version-based, and code-based approaches. We mea-
sured FNs by considering all TPs discovered in the three ap-
proaches as the ground truth.

Approach #TP∗ #FP† #FN‡ Precision R§

Version-based approach (V ) 5 47 22 10% 19%
Version-based approach

(manually correcting versions)
20 29 7 41% 74%

Code-based approach (C) 13 8 14 62% 48%
Union of the version- and

code-base approaches (V ∪C)
15 55 12 21% 56%

V1SCAN 26 1 1 96% 96%
#TP∗: #True positives, #FP†: #False positives, #FN‡: #False negatives,

R§: TP detection rate (#TP / (#TP + #FN)).

Version-based approach. We used CENTRIS [36], a recent
approach for precisely identifying modified OSS components.
CENTRIS identified 23 C/C++ OSS components and versions
thereof in ReactOS. Subsequently, we investigated the CVE
vulnerabilities contained in the components using the CPE
of NVD [21], which specifies the software affected by each
CVE (details are introduced in Section 3.3).

Consequently, 10 components, including LibTIFF and
MbedTLS, were identified as vulnerable, with 52 CVE vul-
nerabilities. However, when we manually examined these 52
CVEs, we observed that the version-based approach produced
many false positives: 47 CVEs (90%) were false positives,
whereas only five CVEs were identified correctly. Most false
positives were the result of incorrect predictions of the com-
ponent version (see Section 2.3).

Despite our attempt to rectify the problem by manually cor-
recting the component versions, the version-based approach
still produced 29 false positives. This is because the version-
based approach misinterprets that the target program still
contains unused vulnerable code or vulnerable code repaired
by backporting security patches. For example, the ReactOS
team resolved three CVE vulnerabilities contained in Libtirpc
v0.1.11 by backporting the security patches, instead of up-
dating the entire Libtirpc to a safe version. However, the
version-based approach failed to filter out the resolved vul-
nerabilities, misconfirming that the three CVEs were still
included in ReactOS (i.e., producing false positives).

Code-based approach. We used VUDDY [14], a function-
based vulnerable code detection approach that was specifi-
cally developed for the discovery of 1-day vulnerabilities. We
tested VUDDY using 4,612 CVE patches (see Section 4.3)
in abstraction mode, which makes VUDDY robust to changes
in parameters, local variables, and called function names.

When we applied VUDDY to ReactOS, we confirmed that
VUDDY reported many false negatives, which we attributed
to the syntax diversity of the vulnerable code. VUDDY could
discover only 13 (48%) of 27 vulnerabilities and failed to de-
tect 14 vulnerable functions. Our measurement of the Jaccard
similarity [32] (considering a function as a set of lines) be-



tween the disclosed vulnerable functions and the vulnerable
functions that existed in ReactOS, indicated a similarity of
less than 60% in the six cases. Moreover, because VUDDY
is not designed to detect vulnerabilities that exist outside func-
tions, it missed two vulnerabilities.

Finally, VUDDY produced eight false positives, all of
which were caused by abstraction. In the case of a security
patch that changes only its abstraction targets, VUDDY can-
not distinguish between vulnerable and patched functions,
thereby producing false positives.

V1SCAN. V1SCAN discovered 26 vulnerabilities in ReactOS
while eliminating most false positives and negatives produced
by the existing approaches. It is noteworthy that V1SCAN
detected more vulnerabilities with significantly fewer false
positives than the union results of existing approaches.

Here we introduce the LibTIFF v4.0.10 case, which is
reused in ReactOS. V1SCAN could filter out vulnerabilities
of LibTIFF that were not reused in ReactOS (e.g., CVE-2020-
35521). In addition, V1SCAN detected the CVE-2018-19210
vulnerability that was not discovered in the version-based
approach, because the CPE provides an incorrect version
(v4.0.9). Moreover, the CVE-2019-14973 vulnerability, in
which the security patch modified outside functions, was
not detected by the code-based approach but discovered in
V1SCAN. Note that the aforementioned vulnerabilities have
been patched in the latest version of ReactOS.

3 Design of V1SCAN

In this section, we describe the design of V1SCAN, which can
precisely detect propagated 1-day vulnerabilities.

3.1 Overview
V1SCAN synergistically combines version- and code-based
approaches to take advantage of their strengths and avoid
their weaknesses. The key idea of V1SCAN, which is sig-
nificantly distinguishable from existing version- and code-
based approaches is that it classifies reused and vulnerable
codes. Such code classification techniques allow V1SCAN to
eliminate false positives of version-based approaches while
addressing false negatives of code-based approaches.

Figure 2 depicts the workflow of V1SCAN, which com-
prises three phases: classification (P1), detection
(P2), and consolidation phase (P3). In P1, V1SCAN clas-
sifies the reused codes of OSS components and the vulnerable
code locations in the target program based on code classi-
fication (see Section 2.2). In P2, V1SCAN detects vulnera-
bilities contained in the target program by using improved
version- and code-based approaches with code classification
techniques. Finally, in P3, V1SCAN examines the two detec-
tion results and consolidates them to confirm the propagated
vulnerabilities included in the target program.

Target 
program

INPUT OUTPUT

1-day
vulnerabilities

P1. Classification P2.Detection P3. Consolidation

Improved version-based approach

Improved code-based approach

Reused code
classification

Vulnerable code 
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Vulnerability
detection

Filtering
false alarms

Vulnerability
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Figure 2: High-level overview of V1SCAN.

Design assumption and text preprocessing. We designed
V1SCAN to detect vulnerabilities at the source code level. Al-
though V1SCAN can operate with any granularity unit, we fo-
cus on the function units in the version-based approach, which
are suitable for identifying reused OSS components [36].

Subsequently, V1SCAN extracts (1) all functions from ev-
ery version of the OSS in our dataset (see Section 4.2), and
(2) all functions of the target program, using a function parser
(see Section 4.1). V1SCAN then performs text preprocessing
on all extracted functions to normalize the code; it removes
comments, linefeed, and whitespace from the function codes.

Moreover, V1SCAN uses locality sensitive hashing (LSH),
which hashes similar input items into the same “buckets” with
high probability [33]; therefore, LSH can be utilized to ad-
dress code modifications in a flexible manner.

We applied LSH to all text-preprocessed functions in (1)
the target program and (2) every version of OSS projects.
Each LSH algorithm provides a functionality (Φ) to measure
the distance between two inputs and the cutoff value (i.e.,
threshold θ). Thus, the relationships in which the two func-
tions ( f1, f2) are identical, similar, or different can be defined
as follows: let the output of Φ be an integer.

• Identical: If Φ( f1, f2) = 0, f1 and f2 are identical.
• Similar: If 0 < Φ( f1, f2)≤ θ, f1 and f2 are similar.
• Different: If Φ( f1, f2)> θ, f1 and f2 are different.

3.2 Classification phase (P1)
In this phase, V1SCAN classifies reused OSS functions and
extracts code lines, which belong to the locations defined in
the vulnerable code classification, from the target program.

3.2.1 Improved version-based approach

Component identification. The first step involved uncover-
ing the OSS components in the target program, which, how-
ever, is difficult to precisely accomplish [9, 36]. Because the
identification of components is beyond the scope of this paper,
we decided to use an existing, well-implemented component
identification tool. We took advantage of CENTRIS [36] be-
cause it can precisely identify OSS components that have been
modified and its source code and dataset are publicly available.
Using CENTRIS, we extracted the names of OSS components
included in the target program. Note that CENTRIS is only
concerned with component identification, and does not di-
rectly participate in vulnerability detection.



Prevalent version identification. We then need to identify
the version of each reused component. However, precise iden-
tification of the version to which reused modified OSS com-
ponents belong is challenging (see Section 2.3). Therefore,
V1SCAN is designed such that it is not critically affected by
the correctness of the identified versions.

Our approach is to first roughly detect vulnerabilities and
then refine the results. In particular, we define the prevalent
version of the OSS component as the version to which the
functions contained in the reused OSS codebase most closely
correspond. To identify the prevalent version, V1SCAN first
compares all functions in the target program with those in
every version of the OSS component. V1SCAN extracts the
OSS functions that are exactly included in the target program,
and then verifies the versions to which each extracted function
belongs. The most frequently identified version is designated
the prevalent version of the OSS component.

Reused code classification. Next, V1SCAN classifies func-
tions reused in OSS components based on the reused code
classification defined in Section 2.2. Because we consider
the function unit in the version-based approach, V1SCAN
classifies reused OSS functions based on code modifications.

When an OSS is reused in the target program, the functions
in the original OSS can be in one of three states: (1) exactly
reused, (2) changed, or (3) unused. Subsequently, V1SCAN
examines the state of all the functions included in the preva-
lent version of the OSS component. We consider the function
relationships defined in Section 3.1.

• Exactly reused functions. If a function in the prevalent
version is identical to a certain function in the target
program, it is considered reused in the target program.

• Changed functions. If a function f ′ that exists in the
target program is similar to function f in the prevalent
version, f is considered a changed function.

• Unused functions. Among all functions in the prevalent
version, those that did not belong to the exactly reused
or changed were included in the unused group.

The changed functions were further classified according
to the version to which they belonged. To this end, V1SCAN
compares f ′ with all functions in every version of the OSS.
If f ′ belongs to any other version of the OSS and is not the
prevalent version, f ′ is stored in the group under the name of
the associated version. In contrast, if f ′ does not belong to
any version of the OSS, it is stored in the “none” group. OSS
functions that do not belong to the prevalent version but are
contained in the target program, as detected in the prevalent
version identification, are also included in the changed group
with their respective version names.

Figure 3 depicts the procedure to classify reused code com-
pared with OSS identification in existing version-based ap-
proaches. V1SCAN stores the hash value of each function
obtained by applying the LSH algorithm (see Section 3.1).

OSS name, 
version

Target program

OSS

OSS name = {
exactly reused : [ f1 ,  f2 ,  … ],

changed : {
version i : [ f3′,  … ], …

none : [ f5′,  … ]},
unused : [ f6 ,  … ]

}

(a) OSS identification in existing
version-based approaches

(b) Reused code classification in V1SCAN

Target program

OSS

fi: a function in the prevalent version
f ′i : a function in the target program similar to fi.

Figure 3: Illustration of the differences between reused code
classification and OSS identification in existing approaches.

3.2.2 Improved code-based approach

Vulnerable code classification. To increase the vulnerability
detection scope, V1SCAN classifies the code locations where
vulnerabilities exist, and then takes an effective vulnerability
detection approach for each location. We considered the fol-
lowing four code locations (see Section 2.2): 1 function, 2
structure, 3 macro, and 4 (global and class) variable.

Code extraction. Subsequently, V1SCAN extracts the code
lines belonging to the location in the target program. In fact,
extracting functions, structures, macros, and variables from
the target program can easily be performed using an exist-
ing C/C++ parser (e.g., [5]). For more accurate vulnerability
detection, V1SCAN further classifies the four locations into
two groups based on the syntactic similarity: (functions and
structures) and (macros and variables). Functions and struc-
tures have in common that multiple code lines are enclosed in
curly braces, while macros and variables generally consist of
only one or two code lines. V1SCAN extracts (1) LSH hash
values (see Section 3.1) and (2) source code lines from all
functions and structures in every C/C++ source file in the tar-
get program. We consider both hash values and lines of code
to reduce false positives in vulnerability discovery (details
are introduced in Section 3.3.2). For macros and variables,
V1SCAN extracts only the corresponding source code lines.

3.3 Detection phase (P2)
V1SCAN detects propagated vulnerabilities in the target pro-
gram, using improved version- and code-based approaches.

3.3.1 Improved version-based approach

Vulnerability detection. V1SCAN detects vulnerabilities in
the target program by using the prevalent version. We used
CPE [21] to construct a CPE database that maps the CVEs
to the affected OSS versions (see Section 4.3). By leveraging
the CPE database, V1SCAN identifies the CVE vulnerabilities
included in the prevalent version of the OSS component. For
example, the CPE of the Heartbleed vulnerability (CVE-2014-
0160) specifies that the vulnerability exists in OpenSSL 1.0.1
to 1.0.1f. If OpenSSL is reused in the target program and
its prevalent version is between 1.0.1 and 1.0.1f, V1SCAN
determines that this vulnerability exists in the target program.



Collection of vulnerable and patched functions. V1SCAN
then removes false positives from the version-based vulner-
ability detection results. To identify the resolved vulnerable
functions, we refer to the vulnerable and patched functions
of CVE vulnerabilities. To this end, we first collected the
security patches for CVEs and then extracted the vulnerable
and patched functions from these patches (see Section 4.3).
Thereafter, text preprocessing is applied to all vulnerable and
patched functions, after which the LSH algorithm is applied
to generate hash values (see Section 3.1).

Filtering. Based on the classification of the reused code,
V1SCAN checks for vulnerable functions and filters out false
alarms from the vulnerability detection results. We consider
the four notations listed in Table 2.

(1) Filtering unused vulnerable functions. The classifica-
tion of reused code simplifies the filtering of the unused
vulnerable functions. If fv is included in the “unused”
group (U), then V1SCAN determines that fv is not reused
in the target program.

∀ fv | fv ∈U → fv /∈ T ( fv is unused)

(2) Filtering resolved vulnerable functions. If developers
resolve fv by backporting security patches, this function
has the same (or similar) code syntax as that of fp be-
longing to the OSS versions that are safe from X . On
this basis, if fv is not included in “exactly reused” but
has a similar function f ′v in the “changed” group (C),
V1SCAN determines that fv was either reused with code
changes (still vulnerable) or resolved by backporting se-
curity patches. To extract only the latter cases, V1SCAN
checks the version to which f ′v belongs.

(2-1) If the version is not included in the CPE of X , it can
be determined that f ′v does not contain the vulnera-
bility. To determine this more thoroughly, V1SCAN
compares f ′v to both fv and fp. If the distance (Φ,
see Section 3.1) between fv and f ′v is greater than
the distance between fp and f ′v (i.e., more similar
to fp than fv), then V1SCAN considers f ′v has been
resolved. This can be represented as follows; let v
be the version to which f ′v belongs.

∀ f ′v ∈C |
(
v /∈CPE(X)

)
∧
(
Φ( fp, f ′v)< Φ( fv, f ′v)≤ θ

)
→ fv is resolved

(2-2) If f ′v does not belong to any version of OSS, de-
ciding whether f ′v is vulnerable based only on the
similarity to the vulnerable function and patch func-
tion may produce a false alarm. Therefore, we put
it on hold and decide whether to filter this vulner-
ability through an improved code-based approach
of V1SCAN (see Section 3.3.2).

Table 2: Defined notations.

Notations Description

T The target program.
X The vulnerability to be examined.
fv The vulnerable function of X .
fp The patched function of X .

Here, a CVE vulnerability may (1) contain multiple vulner-
able functions or (2) not include any vulnerable functions. In
the former case, the propagation of only one vulnerable func-
tion may compromise the security of the entire system [12,14].
Therefore, if more than one vulnerable function remains af-
ter filtering, V1SCAN determines that CVE vulnerability has
propagated to the target program. Conversely, in the latter
case, V1SCAN determines CVE as the correct answer without
filtering. This may yield false positives; however, this rarely
occurs (i.e., not found in our dataset) and arises from our de-
cision that a small number of false positives would be more
tolerable than missing vulnerabilities. Moreover, a security
patch may alter the code beyond the scope of a function (e.g.,
a macro). In this case, we put it on hold and verify it at the
code level (see Section 3.3.2).

Finally, the vulnerability detection result of the version-
based approach in which false positives are removed is ob-
tained as the output of this phase.

3.3.2 Improved code-based approach

Vulnerability signature generation. V1SCAN generates vul-
nerability signatures for each collected CVE and uses them
to detect propagated vulnerabilities. Vulnerability signatures
are generated after identifying the location to which the code
lines modified in the security patch belong to. For example,
Listing 1 shows the patch snippet for CVE-2019-12904 in
Libgcrypt. The snippet contains a patch for all four types of
code locations: macro (lines #3 and #4), variable (lines #6 and
#7), structure (lines #9 and #10), and function (lines #14 and
#15). The locations of the code modified in the security patch
are identified using an existing C/C++ parser (see Section 4).

Thereafter, V1SCAN uses different indexing methods for
each code location. Listing 2 presents the indexing results for
the patch code shown in Listing 1. All the code lines added
and deleted in the security patch were stored. For functions
and structures, the LSH hash value is also stored, as described
in Section 3.2.2. We consider hash values for reducing false
alarms in vulnerability discovery. If we were to detect vulner-
abilities by considering only the code lines added or deleted
in a patch, numerous false alarms could occur, particularly
when short and general codes (e.g., else) are modified in
the patch [14, 34]. Therefore, we attempted to resolve this
issue using the hash value of the entire function or struc-
ture. V1SCAN generates vulnerability signatures for all the
collected CVE patches.



Listing 1: A patch snippet for CVE-2019-12904 in Libgcrypt.
1 //libgcrypt/cipher/cipher-gcm.c
2 ...
3 + #ifdef HAVE_GCC_ATTRIBUTE_ALIGNED
4 + # define ATTR_ALIGNED_64 __attribute__ ((aligned (64)))
5 ...
6 - static const u16 gcmR[256] = {
7 - 0x0000, 0x01c2, 0x0384, 0x0246, 0x0708, 0x06ca, 0x048c,
8 ...
9 + static struct {

10 + volatile u32 counter_head;
11 ...
12 void prefetch_table(const void *tab, size_t len) {
13 ...
14 - for (i = 0; i < len; i += 8 * 32)
15 + for (i = 0; len - i >= 8 * 32; i += 8 * 32)

Function and structure vulnerability detection. V1SCAN
then detects the vulnerabilities propagated to the target pro-
gram. To respond flexibly to code changes unrelated to a
vulnerability, V1SCAN focuses on the core code lines that
were added or deleted in the security patch [34, 37].

The process of detecting vulnerabilities in functions and
structures comprises two steps.

S1. Hash comparison: First, V1SCAN compares the hash
values of all functions (structures) in vulnerability sig-
natures with those of the target program. If a hash value
that belongs to both the signature and target program is
detected, V1SCAN determines that the vulnerability has
been propagated to the target program. Otherwise, if a
similar hash value is discovered, V1SCAN moves to the
next step, namely, line comparison.

S2. Line comparison: When a similar function (structure)
is detected between the vulnerability signature and the
target program, V1SCAN checks whether code deleted
from (resp. added to) the patch was included (resp. was
not included) in the function (structure) of the target
program. If this is satisfied, V1SCAN determines that
the target program contains the vulnerability.

Here, if we only consider the code syntax in the line com-
parison, as with certain existing approaches (e.g., [35, 37]),
false positives or negatives may arise especially when the code
modified in the patch is short and general. Assume that the
code line “else” is added by the patch. This code line may
exist in the vulnerable function. Hence, even if the vulnerable
function is not patched, the function may be misinterpreted to
be safe because it contains the code line added by the patch.

Therefore, we decided to consider the number of times
deleted (added) code lines appear in the target function. Sup-
pose that a security patch deletes the code line ldel and adds
the code line ladd to the function fv. Let the function after
applying the patch be fp. V1SCAN counts the number of
times ldel and ladd appear in fv and fp, respectively. There-
after, when a function f ′v similar to fv is detected through
hash comparison, V1SCAN counts the number of times ldel
and ladd appear in f ′v. If the result is the same as that of fv but
differs from that of fp, f ′v is considered a vulnerable function.

Listing 2: Example vulnerability signature for CVE-2019-12904.
1 MACRO
2 + #ifdef HAVE_GCC_ATTRIBUTE_ALIGNED
3 + # define ATTR_ALIGNED_64 __attribute__ ((aligned (64)))
4

5 VARIABLE
6 - static const u16 gcmR[256] = {
7 - 0x0000, 0x01c2, 0x0384, 0x0246, 0x0708, 0x06ca, 0x048c,
8

9 STRUCTURE (HASH: 3A5F116800...)
10 + static struct {
11 + volatile u32 counter_head;
12

13 FUNCTION (HASH: BBC0994B88...)
14 - for (i = 0; i < len; i += 8 * 32)
15 + for (i = 0; len - i >= 8 * 32; i += 8 * 32)

This method can distinguish between vulnerable and
patched functions even when both deleted and added code
lines exist in the target function. Therefore, V1SCAN can de-
tect vulnerabilities with fewer false positives than existing
simple code syntax checking approaches.

V1SCAN can detect exactly reused vulnerable functions
(structures) with the aid of hash comparison and identify vul-
nerable functions (structures) whose code syntax has been
changed using line comparison. This guarantees a higher
vulnerability detection rate than the existing code-based ap-
proach that considers only hash comparison (e.g., [14]) and
lowers the false positive rate compared with the existing ap-
proach that only considers line comparison (e.g., [12]).

Macro and variable vulnerability detection. To detect
vulnerabilities in macros and variables (global and class
variables), V1SCAN compares the lines of code containing
macros and variables in vulnerability signatures to those in the
target program. If all the lines of code containing macros (vari-
ables) deleted (resp. added) by the patch were included (resp.
not included) in the target program, V1SCAN determines that
the target program contains the vulnerability.

If the security patch did not add any lines of code, then only
the deleted lines of code are used to check for vulnerability
propagation. On the other hand, if the patch did not delete
any lines of code, it would be premature to conclude that the
vulnerability was propagated by solely relying on the fact that
the lines of code added by the patch do not exist in the target
program. Thus, V1SCAN omits the latter case to reduce false
alarms. This could yield a small number of false negatives;
however, this decision was made because the addition of lines
of code containing a macro or variables by a security patch
without removing any lines of code from all four vulnerable
code locations rarely occurs.

The vulnerability detection result of the improved code-
based approach in which false negatives are covered is ob-
tained as the output of this phase. Among the vulnerabilities
held by the version-based approach (e.g., existing outside the
function), the vulnerabilities detected in the code-based ap-
proach are included in the detection result as correct answers,
and all others are considered false positives and filtered out.



3.4 Consolidation phase (P3)
By consolidating the vulnerability detection results of the
improved version- and code-based approaches, V1SCAN de-
termines vulnerabilities that exist in the target program.

As explained in P1 and P2, V1SCAN reduces false posi-
tives and negatives in the version- and code-based approach.
The false alarms produced by the version-based approach
were removed through the reuse code classification-based
filtering, and the false alarms of the code-based approach
were prevented by using both the hash and line comparisons.
Moreover, V1SCAN covers the false negatives of version- and
code-based approaches by combining their results. Vulnera-
bilities included in less frequently identified versions (i.e., not
a prevalent version) can be covered by detecting them with
the code-based approach of V1SCAN. In addition, by leverag-
ing vulnerable code classification and focusing only on core
vulnerable code lines, V1SCAN can address false negatives
of existing code-based approaches. Therefore, we denote the
union of the detection results of both approaches as the list of
vulnerabilities contained in the target programs.

4 Implementation of V1SCAN

This section introduces the implementation of V1SCAN, in-
cluding its architecture and the datasets.

4.1 Architecture
V1SCAN comprises the two modules: a dataset collector and
a vulnerability detector. The dataset collector constructs the
OSS and CVE datasets (see Section 4.2 and Section 4.3).

The vulnerability detector performs vulnerability discovery
on the target program, which is implemented in approximately
1,800 lines of Python code excluding external libraries. We
use CENTRIS [36] to identify the OSS components in the
target program. For the parser and LSH algorithm, we utilize
Ctags [5] and TLSH [23, 30]. Ctags is a regular expression-
based parser, and has the advantage of scalability and detec-
tion accuracy; it can be used to precisely parse C/C++ source
files without being affected by the code size of the target pro-
gram. In addition, because Ctags provides the functionality
to identify functions, structures, macros, and variables from
source files, it can be effectively used to classify vulnerable
locations. Next, we selected the TLSH [23, 30] as the LSH
algorithm, which is both accurate and scalable. We used the
similarity measurement function provided by TLSH as it is,
and selected the cutoff value of 30 (see Section 3.1), which
was observed to be the most efficient in their paper [23].

4.2 OSS dataset
The OSS dataset is utilized for identifying OSS components
in the target program. We leveraged the OSS dataset provided
by CENTRIS [36], which consists of all versions of the 10,241
popular C/C++ OSS projects on GitHub.

Table 3: CVE dataset overview.

Category Count (#)
• Security patches 4,612

- Vulnerable and patched function pairs 7,675
- Vulnerable and patched structure pairs 106
- Vulnerable and patched macro pairs 221
- Vulnerable and patched variable pairs 598

• CPE database
- Contained CVEs 137,892
- Collected vulnerable software 75,489
- Collected vulnerable versions 559,305

Since the dataset of CENTRIS was constructed in April
2020, we additionally collected versions generated after that
of each repository (as of April 2022). As a result, the number
of versions increased from 229,326 to 246,512 in V1SCAN.

4.3 CVE dataset
For each CVE, V1SCAN first collects the security patch, and
then extracts necessary information (e.g., vulnerable func-
tions) from the patch. V1SCAN then constructs the CPE
database, which is used in the improved version-based ap-
proach. Table 3 summarizes the CVE dataset.

Collecting security patches. We collected security patches
of CVE vulnerabilities by leveraging existing approaches [11,
16, 35, 37]. We examined CVEs in the NVD and checked
whether a “Git commit” URL was included in the references;
this URL provides the code-level security patches. Hence, we
can obtain the security patch commits for CVE vulnerabilities
by crawling the URLs. As a result, we collected 4,612 C/C++
security patches from the NVD (as of August 2022).

Identifying vulnerable locations. Because V1SCAN uses
vulnerable code classification, it is necessary to identify the
location to which the code modified by the security patch
belongs. Each security patch provides (1) a Git index and (2)
code line numbers that include vulnerable and patched code.

We access the index to obtain the vulnerable and patched
source files (e.g., using the “git show” command). We then
parse the source files using Ctags [5]. Using this output, we
can obtain the start and end line numbers of each function,
structure, macro, and variable. Finally, we identify the loca-
tions that contain the modified code lines in the patch. If
the modified code lines belong to a function or structure, the
entire code of the vulnerable and patched function (and struc-
ture) is extracted. If the modified code lines belong to a macro
or variable, the exact lines of code are extracted.

As a result, we collected 7,675 vulnerable and patched
function pairs, 106 structure pairs, 221 macro pairs, and 598
variable pairs. Over 97% of the code repaired by the patch was
included in one of the four locations. The remaining 3% were
code patches that very rarely appear, such as changing header
file names. This confirms that considering these four locations
for vulnerability detection is sufficiently comprehensive.



CPE database. To construct the CPE database, we extract
CPEs of all CVEs registered in NVD using the NVD JSON
feeds. We stored CPE in a dictionary, in which the vulnerable
software (with version) as the key and the CVEs contained in
the vulnerable software as the value; this dictionary becomes
the CPE database. Consequently, we stored a total of 137,892
CVEs with 75,489 vulnerable software information (a total of
559,305 versions) in the CPE database (as of August 2022).

The issue here is that the names and versions of the OSS
components detected in V1SCAN follow the form provided
by GitHub (as with the CENTRIS dataset), whereas CPE uses
its own form of vulnerable software and version names. For
example, Linux kernel v5.15 is referred as “torvalds/linux,
v5.15” on GitHub and “linux/linux_kernel, 5.15” on CPE. It
is nearly infeasible and time-consuming to check all the tens
of thousands of vulnerable software lists and internal versions.
Therefore, we first examined the following software, and man-
ually match the software and version names of GitHub and
those of CPE: (1) OSS that was reused in the target pro-
grams selected for the experiments (see Section 5.1) and (2)
frequently reused OSS projects mentioned in the CENTRIS
paper (e.g., Zlib, Lua, and GoogleTest). Information on the
rest of the software will also be examined.

5 Evaluation

In this section, we evaluate V1SCAN based on the following
three questions.

Q1. Detection accuracy: How precisely does V1SCAN de-
tect vulnerabilities compared to the state-of-the-art vul-
nerability detection approaches? (Section 5.1)

Q2. Effectiveness: How effective is V1SCAN compared to
existing version- and code-based approaches in vulnera-
bility discovery? (Section 5.2)

Q3. Performance and scalability: How fast and scalable is
V1SCAN in detecting vulnerabilities? (Section 5.3)

We ran V1SCAN on a machine with Windows 10, AMD
Ryzen 7 3700X @ 3.60 GHz, 48GB RAM, and 1TB SSD.

Target software selection. To demonstrate the generality of
V1SCAN, we selected target software based on the following
three criteria: (1) popular C/C++ software, (2) containing a
sufficient number of OSS components, and (3) including a
considerable number of CVE vulnerabilities.

We examined GitHub [10], which is one of the most popu-
lar hosting services, as the first criterion. We collected C/C++
repositories that exhibited more than 5,000 stargazers (a pop-
ularity indicator) from GitHub and collected approximately
600 software programs. As a sufficient number of CVEs were
required for accuracy measurement, we selected the version
of each software that was released last year (closest to January
2021). For the second criterion, we ranked the 600 collected
software according to the number of OSS components iden-
tified by CENTRIS. While examining the ranked software

Table 4: Target software overview.
IDX Name Version #CVE† #OSS #C/C++ Line #Star§ Domain

S1 Turicreate v6.4.1 69 28 4,091,413 10.7K Machine learning
S2 ReactOS v0.4.13 67 23 6,419,855 10.8K Operating system
S3 TizenRT 3.0_GBM 62 22 2,156,848 439 Operating system
S4 Aseprite v1.2.25 53 12 846,500 17K Animation tool
S5 FreeBSD v12.2.0 30 47 14,489,534 6.4K Operating system
S6 MongoDB r4.2.11 28 13 2,822,534 21.5K Database
S7 MAME 0228 24 26 4,541,014 5.8K Emulator
S8 Filament v1.9.9 16 16 1,295,918 13.8K Rendering engine
S9 Godot v3.2.2 16 21 1,298,228 48.1K Game engine

S10 ArangoDB v3.6.12 15 22 5,465,881 12.2K Database

Total - - 380 230 43,427,725 147K -

†: #CVEs discovered by the version-based approach, §: #Stargazers.

projects in descending order, we applied a version-based ap-
proach to each software program, identified the number of
contained CVEs (with manual version correction), and se-
lected the software that contained more than 10 CVEs (for the
third criterion). Consequently, nine target software programs
were selected. In addition, we included TizenRT1, which con-
tains many components and can represent industrial software.

Table 4 summarizes the ten selected target programs. The
target programs that were selected based on the clear cri-
teria had various codebase sizes ranging from 846,500 to
14,489,534 C/C++ lines of code, and were obtained from di-
verse domains (operating systems, emulators, and databases).
Therefore, we determined that the selected target programs
could provide generality to V1SCAN during evaluation. Note
that we chose target programs with a considerable number
of vulnerabilities for a more impartial accuracy assessment.
V1SCAN can detect vulnerabilities even in software with few
vulnerabilities, without any limitations.

5.1 Accuracy measurement

Methodology. We compared V1SCAN with the state-of-the-
art vulnerability discovery approaches: MOVERY [34] and
V0Finder [35], which are capable of discovering vulnerable
codes propagated with code modifications to some extent. We
used their default settings by referring to their paper.

To evaluate accuracy, we used the following five metrics:
true positive (TP), false positive (FP), false negative (FN),
precision (P = #TP/(#TP + #FP)), and TP detection rate (R =
#TP/(#TP + #FN)). Because it is nearly infeasible to detect all
vulnerabilities in a target program, we cannot easily measure
the FNs of the tested approaches. Therefore, we consider
only indisputable FNs; for example, FNs in V1SCAN refer
to the vulnerabilities detected by the other two approaches,
but were not discovered by V1SCAN. The TPs and FPs were
determined by manual analysis, and two security analysts
examined all vulnerability detection results. We examined
the results by referring to (1) the detected vulnerable code,
(2) the security patch, (3) the NVD description, and (4) issue
trackers that denote vulnerability.

1https://github.com/samsung/tizenrt

https://github.com/samsung/tizenrt


Table 5: Accuracy of V1SCAN, MOVERY, and V0Finder in vulnerability detection. Results with the highest precision and TP detection
rate for each target program are highlighted in bold text.

Target
program CVEs∗ V1SCAN MOVERY V0Finder

#TP #FP #FN P† R‡ #TP #FP #FN P R #TP #FP #FN P R

Turicreate 36 32 1 4 0.97 0.89 22 5 14 0.81 0.61 22 2 14 0.92 0.61
ReactOS 29 26 1 3 0.96 0.90 24 3 5 0.89 0.83 18 4 11 0.82 0.62
FreeBSD 23 19 2 4 0.90 0.83 13 4 10 0.76 0.57 12 7 11 0.63 0.52

MongoDB 14 14 0 0 1.00 1.00 4 0 10 1.00 0.29 4 0 10 1.00 0.29
Filament 14 14 0 0 1.00 1.00 10 0 4 1.00 0.71 4 0 10 1.00 0.29
TizenRT 10 9 0 1 1.00 0.90 4 1 6 0.80 0.40 3 1 7 0.75 0.30
Aseprite 8 8 0 0 1.00 1.00 6 0 2 1.00 0.75 1 1 7 0.50 0.13
MAME 8 7 2 1 0.78 0.88 6 1 2 0.86 0.75 2 1 6 0.67 0.25
Godot 4 4 0 0 1.00 1.00 1 3 3 0.25 0.25 1 2 3 0.33 0.25

ArangoDB 4 4 0 0 1.00 1.00 0 0 4 N/A 0.00 0 1 4 0.00 0.00

Total 150 137 6 13 0.96 0.91 90 17 60 0.84 0.60 67 19 83 0.78 0.45

CVEs∗: Total number of TPs detected by V1SCAN, MOVERY, and V0Finder, P†: Precision, R‡: TP detection rate.

Unlike V0Finder, which is compatible with our dataset,
MOVERY offers datasets with their own preprocessing ap-
plied. Therefore, we additionally applied preprocessing to
the vulnerability and patched functions we gathered (see Sec-
tion 4.3), by referring to the MOVERY paper, e.g., extracting
control dependency graphs of the vulnerable and patched
functions by using the Joern [39] parser.

Overall results. Table 5 summarizes the vulnerability detec-
tion results. We confirmed that 150 CVE vulnerabilities were
discovered in ten target programs. Among them, 93 (62%)
vulnerabilities were reused in the target program with code
changes. Nevertheless, V1SCAN showed substantially bet-
ter accuracy than the other approaches. It is noteworthy that
V1SCAN could reduce the false negative rate of MOVERY and
V0Finder from 40% and 55% to 9%; V1SCAN discovered
137 vulnerabilities from ten target programs, while existing
approaches detected at most 90 vulnerabilities (see Figure 4).

FNs of existing approaches. In our experiments, MOVERY
and V0Finder failed to detect many vulnerabilities, i.e., they
missed 60 and 83 vulnerabilities, respectively. We observed
that there are two main reasons for this: when the propagated
vulnerable code (1) underwent significant syntax change or
(2) existed outside of functions.

MOVERY and V0Finder detect vulnerabilities by assum-
ing that propagated vulnerable codes have similar syntax (e.g.,
over 50% similarity) to the disclosed vulnerable codes, caus-
ing failure in discovering vulnerable codes with significant
syntax changes. Specifically, V0Finder reported more false
negatives compared to MOVERY as it was more limited in
detecting heavily modified vulnerable codes. Additionally,
they failed to detect seven vulnerabilities that exist outside of
functions as they only consider function units.

FPs of existing approaches. MOVERY and V0Finder pro-
duced 17 and 19 false positives in vulnerability discovery.

MOVERY can detect vulnerabilities in which the code lines
deleted from the patch do not exist, but this approach rather
generated FPs; a function unrelated to the vulnerability, in
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Figure 4: Vulnerability detection results of V1SCAN, MOVERY,
and V0Finder.

which neither the codes added nor deleted from the patch
were present, was falsely detected as vulnerable.

In addition, when the code lines deleted in the patch exists
in multiple locations in the vulnerable code, V0Finder mis-
interpreted that the vulnerability still remains even after the
patch is applied, thereby generating false alarms.

Accuracy of V1SCAN. V1SCAN significantly outperformed
the other approaches: V1SCAN could considerably reduce
FPs of MOVERY and V0Finder, while discovering more TPs.
It is noteworthy that V1SCAN showed high detection accu-
racy regardless of the number of vulnerabilities discovered in
software; V1SCAN succeeded in detecting propagated vulner-
abilities without false alarms even in Godot and ArangoDB, in
which only a small number of vulnerabilities were discovered.

Although V1SCAN detected vulnerabilities precisely in
most cases, it reported several false results (6 FPs and 13
FNs). The six FPs were caused by similar code logic in the
OSS components [1, 37]. If a function similar to one that was
repaired in the security patch existed in the target program,
V1SCAN misinterpreted the reused function as being vulnera-
ble even though it was safe. Because the possibility of actual
abuse was negligible, we determined these to be FPs.

FNs in V1SCAN were reported when the syntax of the
reused vulnerable function differed vastly from that disclosed
by the NVD (e.g., syntax similarity of less than 15%). Addi-
tionally, unlike MOVERY, V1SCAN only targets vulnerabili-
ties with code lines deleted from the patch. This is to prevent
false positives that may occur when considering only the code
lines added in the patch, but this leads to two FNs. Further-



Table 6: Accuracy comparison between the improved version-
based approach of V1SCAN and CENTRIS.

Target
program

V1SCAN (version-based) CENTRIS

#TP #FP #FN #TP #FP #FN
Turicreate 23 0 3 22 24 4
ReactOS 20 0 1 5 47 16
TizenRT 7 0 0 7 33 0
Aseprite 3 0 4 7 24 0
FreeBSD 10 0 2 7 19 5

MongoDB 6 0 0 6 9 0
MAME 1 0 1 2 23 0
Filament 3 0 0 3 10 0

Godot 4 0 2 2 8 4
ArangoDB 1 0 0 1 10 0

Total 78 0 13 62 207 29

more, V1SCAN failed to detect OSS vulnerabilities when the
reuse relationship was unclear. For example, vulnerable codes
that were inherited from the Linux Kernel existed in FreeBSD.
V1SCAN failed to identify the reuse relationship between the
Linux Kernel and FreeBSD, resulting in three FNs.

5.2 Effectiveness of V1SCAN

Next, we evaluate the effectiveness of V1SCAN compared to
existing version- and code-based approaches. In the experi-
ments, CENTRIS [36] and VUDDY [14] were leveraged for
the version- and code-based approaches, respectively.

Methodology. We first evaluated how the improved version-
and code-based approaches of V1SCAN enhance vulnerabil-
ity detection accuracy over the baselines individually (i.e.,
CENTRIS and VUDDY). Thereafter, we assessed the effec-
tiveness of V1SCAN by comparing its vulnerability detection
results with the combined results (union) of CENTRIS and
VUDDY. We used the vulnerability dataset (4,612 CVE vul-
nerabilities) collected in Section 4.3, and used the same target
programs (Table 4) and metrics introduced in Section 5.1. As
in the previous experiment, TPs and FPs were established
through manual analysis. Finally, when comparing two ap-
proaches here, if a vulnerability detected by one approach
goes undetected by the other approach, it is considered a false
negative of the latter. Therefore, in subsequent experiments,
FNs are may differ from that introduced in Section 5.1.

Effectiveness of the improved version-based approach.
The improved version-based approach of V1SCAN was sub-
stantially better accurate than CENTRIS (see Table 6). It dis-
covered 78 vulnerabilities in ten target programs without
producing any false alarms by using reuse code classification.
V1SCAN reported 13 FNs that occurred when a vulnerability
contained in the less frequent version of the OSS (not a preva-
lent version) was reused in the target program, or because it
was accidentally filtered out during the filtering process. Note
that some of these FNs can be overcome with the improved
code-based approach of V1SCAN.

Table 7: Accuracy comparison between the improved code-based
approach of V1SCAN and VUDDY.

Target
program

V1SCAN (code-based) VUDDY
#TP #FP #FN #TP #FP #FN

Turicreate 13 1 0 9 9 4
ReactOS 21 1 0 13 8 8
TizenRT 7 0 0 5 5 2
Aseprite 8 0 0 3 0 5
FreeBSD 12 2 0 10 0 2

MongoDB 10 0 0 3 3 7
MAME 7 2 0 1 0 6
Filament 13 0 0 4 3 9

Godot 1 0 0 1 0 0
ArangoDB 4 0 0 0 2 4

Total 96 6 0 49 30 47

CENTRIS discovered only 62 CVE vulnerabilities while
producing 207 false alarms (i.e., a precision of 23%). When
CENTRIS fails to predict the correct component versions, it
would fail to detect vulnerabilities contained in the reused
components (FNs). Additionally, it produced many FPs when
(1) the version prediction failed (103 FPs), and (2) a compo-
nent was reused with code modifications (97 FPs). In the latter
case, 81 vulnerabilities were not reused in the target program
and 16 vulnerabilities were repaired by backporting security
patches. The remaining seven FPs occurred because the CPE
provided an incorrect OSS version in that a version without a
vulnerable function was referred to as vulnerable [8, 35].

Effectiveness of the improved code-based approach. The
improved code-based approach used by V1SCAN detected
twice as many TPs as VUDDY (see Table 7).

It is noteworthy that V1SCAN covered all vulnerabilities de-
tected by VUDDY. Specifically, V1SCAN could detect seven
CVE vulnerabilities that existed outside of functions by us-
ing the vulnerable code classification technique. Moreover,
V1SCAN could discover modified vulnerable codes by com-
posing a signature with core code lines related to vulnerabil-
ities. V1SCAN produced six FPs owing to the similar code
logic in OSS components, as explained in Section 5.1.

In contrast, VUDDY reported 47 FNs (a 51% TP detec-
tion rate). It failed to detect most vulnerabilities when the
propagated vulnerable code underwent syntax changes. In
addition, VUDDY could not detect vulnerabilities that exist
outside of functions (e.g., macro vulnerabilities) because it
only considered function units.

Furthermore, VUDDY produced 30 FPs, mainly because of
the abstraction method (see Section 2.4). When the security
patch changes only the abstraction targets (e.g., parameters
and local variable names), VUDDY cannot differentiate be-
tween vulnerable and patched functions, resulting in an FP
being reported. Finally, if the code of the function to which the
security patch is applied is extremely short and general (e.g.,
a single line return statement), VUDDY mistakenly detects
lines of code that are similar but safe as being vulnerable.



Table 8: Accuracy comparison between V1SCAN and the com-
bined (union) results of CENTRIS and VUDDY.

Target
program

V1SCAN Union
#TP #FP #FN P R #TP #FP #FN P R

Turicreate 32 1 2 0.97 0.94 30 32 4 0.48 0.88
ReactOS 26 1 1 0.96 0.96 15 55 12 0.21 0.56
TizenRT 9 0 0 1.00 1.00 9 38 0 0.19 1.00
Aseprite 8 0 4 1.00 0.67 10 24 2 0.29 0.83
FreeBSD 19 2 0 0.90 1.00 13 19 6 0.41 0.68

MongoDB 14 0 0 1.00 1.00 9 11 5 0.45 0.64
MAME 7 2 1 0.78 0.88 3 23 5 0.12 0.38
Filament 14 0 0 1.00 1.00 5 13 9 0.28 0.36

Godot 4 0 2 1.00 0.67 3 8 3 0.27 0.50
ArangoDB 4 0 0 1.00 1.00 1 12 3 0.08 0.25

Total 137 6 10 0.96 0.93 98 235 49 0.29 0.67

Comparison with the combined results. Finally, we com-
pared the vulnerability detection results of V1SCAN to the
combined results of CENTRIS and VUDDY. Table 8 summa-
rizes the experimental results. Despite combining the results
of CENTRIS and VUDDY, V1SCAN could detect 40% more
vulnerabilities than the combined results while eliminating
more than 97% of FPs. The code-based approach used by
V1SCAN could address several FNs of the version-based ap-
proach of V1SCAN; by synergistically consolidating the two
results, V1SCAN discovered more vulnerabilities than either
approach in a precise manner.

In summary, each of the improved version- and code-based
techniques used in V1SCAN showed higher accuracy than ex-
isting version- and code-based approaches. Even combining
the results of existing approaches, V1SCAN showed signifi-
cantly better detection accuracy. The comprehensive approach
of V1SCAN, which systematically overcomes the problem of
the many FPs and FNs generated by the respective existing
approaches, can be considered highly effective.

5.3 Performance and scalability
The performance and scalability of V1SCAN were measured
using the dataset built by CENTRIS [36], which revealed that
4,434 popular GitHub C/C++ software programs reused one
or more OSS components. We measured the elapsed time
required for V1SCAN to detect vulnerabilities in the 4,434
software programs (ranging from 1K to 20M code lines),
excluding the time required for identifying OSS components
using CENTRIS (averaged 2 minutes per target software) and
collecting CVE datasets (total 2 hours). The average codebase
size of 4,434 software programs was 300K lines of code.

However, manually matching the GitHub and CPE names
of all the OSS components detected in the 4,434 software
would be a tedious and error-prone task (see Section 4.3).
Therefore, we only considered OSS projects that had already
been verified (mapped) in Section 5.1. Note that such OSS
projects could cover more than 80% of the components de-
tected in the 4,434 software programs.
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Figure 5: Elapsed time for vulnerability detection in 4,434 popu-
lar C/C++ software programs with various code sizes.

Figure 5 illustrates the time measurement result. We ob-
served that V1SCAN detected vulnerabilities in most of the
target programs (99%) within 20 seconds. The target pro-
gram that required the longest time was FreeBSD (86 sec-
onds), which contained many OSS components and had a
large codebase size. Overall, the time V1SCAN required for
vulnerability detection was proportional to the codebase size
of the target program, but several factors, such as the number
of components and vulnerabilities contained in the prevalent
versions also affected the elapsed time.

Compared to the existing code-based approaches (e.g.,
[12, 14, 34, 37]), which took an average of 10 s to detect vul-
nerabilities in a target program, it is noteworthy that V1SCAN
did not differ significantly in terms of the time required, even
though it used both the improved version- and code-based
approaches and showed much higher detection accuracy. In
summary, the discovery of vulnerabilities within 20 seconds
in 99% of the target programs (even with large codebase sizes)
suggests that V1SCAN delivers high performance combined
with scalability and is suitable for practical use.

6 Discussion

Practicality of V1SCAN. We applied V1SCAN to the latest
versions of various software programs to evaluate its practi-
cality. To this end, we randomly selected 100 GitHub C/C++
repositories with over 1,000 stargazers, including the selected
target programs in Section 5.1 and other popular software
programs (e.g., Git and Linux kernel).

Consequently, V1SCAN detected 73 vulnerabilities, of
which 14 were successfully reproduced. The failure to repro-
duce the vulnerability was due to a compilation error, a failure
to call the vulnerable function, or a publicly unavailable proof
of concept. We reported all the cases in which vulnerabilities
were reproduced to the responsible development teams. It is
worth noting that the Common Vulnerability Scoring System
(CVSS) for 12 of the 14 reproducible vulnerabilities is “high.”

We introduce an example of the vulnerability discovered
in LibGDX. V1SCAN detected that the latest version of
LibGDX, which is a popular cross-platform game develop-
ment framework, used a vulnerable version of the STB library.
Because the vulnerabilities contained in STB can potentially
lead to a remote code execution attack, a patch is urgently re-



quired. We reported two vulnerabilities to the LibGDX team
in March 2022. They confirmed our report and immediately
applied the security patches to their codebase.

V1SCAN also detected vulnerabilities in other software,
including OpenMVG, FreeBSD, and Disque. We reported
the vulnerabilities to the respective development teams; the
FreeBSD team responded that they would fix the vulnerability
in the subsequent versions. Patch requests are currently pend-
ing for the four cases, despite our multiple reports. Nonethe-
less, we observed that V1SCAN could be effectively used for
vulnerability detection in real-world software programs.

Limitations. V1SCAN makes several assumptions that limit
its application.

First, V1SCAN can be applied only when the source code
of the target program is available.

Second, although V1SCAN outperformed the existing ap-
proaches, it may fail to detect several vulnerabilities. A typical
example other than those introduced in Section 5.1 is the vul-
nerability in which CPE is incorrectly provided and, at the
same time, reused with significant code changes. To address
this problem, we can devise a CPE verification technique
(e.g., [6, 8, 35]) or apply a more relaxed code-based approach.
However, the former is beyond the scope of this paper, and par-
ticular caution is needed, as the latter may produce more FPs.
Additionally, while V1SCAN can handle the syntax diversity
of vulnerable codes, it may not detect propagated vulnerable
functions that do not contain the code lines deleted in the
patch. This is a result of our decision to avoid potential FPs
(Section 5.1), but it may result in the reporting of several FNs.

Third, V1SCAN may not be able to filter code vulnerabil-
ities resolved by security patches applied by the developers
themselves. To solve this problem, we are considering apply-
ing semantic analysis to vulnerable and patched codes.

Finally, the accuracy of V1SCAN can be affected by the
performance of external tools. For example, CENTRIS can
incorrectly identify components, causing V1SCAN to produce
FPs. In addition, FPs and FNs may be generated owing to the
selected function parser and LSH algorithm (see Section 5.1).
If this becomes an issue, V1SCAN can be plugged into other
tools to enhance the vulnerability discovery accuracy.

7 Related work

Software composition analysis. Several approaches have
attempted to detect third-party OSS components reused in
target programs (e.g., [2, 9, 17, 20, 28, 36, 40, 41]); some of
these can be used to detect vulnerabilities. Woo et al. [36] pre-
sented CENTRIS to identify the modified OSS components in
a target program. It significantly reduces false alarms in com-
ponent identification by considering only the unique parts of
the OSS through code segmentation. Duan et al. [9] proposed
OSSPolice to identify 1-day vulnerabilities from the third-
party libraries of an Android application. It utilizes constant
features to extract library versions, and determines whether

vulnerable versions were used in the target application. Zhan
et al. [40] proposed ATVHunter to precisely detect versions of
third-party libraries using the control flow graph of the appli-
cation. Based on the identified versions, they verified whether
the target application contained known vulnerabilities.

However, their goal was to precisely identify the compo-
nents, and they did not fully consider OSS modifications for
vulnerability detection. Therefore, they may produce many
false alarms in our problem situations (see Section 5.1).

Vulnerable code detection. Several approaches have at-
tempted to discover vulnerable code in target programs (e.g.,
[3, 12, 14, 34, 37]). Jang et al. [12] proposed ReDeBug, a
token-level vulnerable code clone detection approach that
uses a sliding window technique. Kim et al. [14] presented
VUDDY, a function-level vulnerable code clone detection ap-
proach that can scalably detect 1-day vulnerabilities. Bowman
et al. [3] proposed VGRAPH, a code property graph based
vulnerable code detection approach that is robust to code
modification. Xiao et al. [37] presented MVP, a recurring
vulnerability detection approach, which can discover vulner-
able code that recurs with different syntax. Woo et al. [34]
proposed MOVERY, an approach that can precisely detect
modified vulnerable code clones.

Although their goals are similar to ours, they did not con-
sider vulnerable code whose code has changed significantly
owing to the modified OSS reuse, which led to the production
of false negatives when applied to our target problem. Also,
they cannot counteract vulnerabilities that exist outside of the
selected granularity (see Section 5.1 and Section 6). Other
approaches have attempted to detect vulnerabilities based on
learning algorithms (e.g., [18, 19]). These approaches can be
applied to discover general vulnerable code; however, they
are not applicable for detecting 1-day vulnerabilities.

Code clone detection. Many approaches attempted to detect
code clones (e.g., [4, 13, 24–27, 31]). However, as verified in
the previous studies (e.g., [14, 37]), they generate numerous
false alarms when applied to detect vulnerable code. Hence,
they cannot be directly applied to solving our target issue.

8 Conclusion

Detecting known security vulnerabilities in third-party OSS
components is the first step toward achieving secure software.
In this regard, we presented V1SCAN, which is a precise ap-
proach for detecting 1-day vulnerabilities from modified OSS
components in a target program. V1SCAN significantly out-
performed existing approaches in terms of 1-day vulnerability
discovery accuracy by consolidating version- and code-based
approaches, along with the reused code classification and
vulnerable code classification techniques. Equipped with the
vulnerability detection results of V1SCAN, developers can
mitigate the potential risks imposed by modified third-party
OSS reuse, rendering a safer software ecosystem.
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