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ABSTRACT

The problem of �nding an optimal product se�
quence for sequential multiplication of matrices �the
matrix chain ordering problem� MCOP� is well�known
and has been studied for a long time� In this paper�
we consider the problem of �nding an optimal prod�
uct schedule for evaluating a chain of matrix products
on a parallel computer �the matrix chain scheduling
problem� MCSP�� The di�erence between MCSP and
MCOP is that MCOP considers a product sequence
for single processor systems and MCSP considers a se�
quence of concurrent matrix products for parallel sys�
tems� The approach of parallelizing each matrix prod�
uct after �nding an optimal product sequence for single
processor systems does not always guarantee a minimal
evaluation time since each parallelized matrix product
may use processors ine�ciently� We introduce a pro�
cessor scheduling algorithm for MCSP which attempts
to minimize the evaluation time of a chain of matrix
products on a parallel computer� even at the expense
of a slight increase in the total number of operations�
Experiments on Fujitsu AP�			 multicomputer show
that the proposed algorithm decreases the time required
to evaluate a chain of matrix products in actual parallel
systems�

Keywords � Processor scheduling� matrix chain
product� dynamic programming� parallel matrix
multiplication� matrix chain scheduling problem�

� INTRODUCTION

Matrix multiplication is a computation intensive
part of many commonly used scienti�c computing ap�
plications� In many applications such as robotics� ma�
chine control� and computer animation� a chain of ma�
trices is multiplied consecutively� In the evaluation
of a chain of matrix products with n matrices M �
M��M��� � ��Mn� whereMi is anmi�mi���mi � ��
matrix� the product sequence greatly a	ects the total
number of operations required to evaluate M� even
though the �nal result is the same for all product se�
quences by the associative law of matrix multiplication�
An arbitrary product sequence of matrices may be as
bad as 
�T �

opt� where Topt is the minimum number of
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operations required to evaluate a chain of matrix prod�
ucts ���� The matrix chain ordering problem �MCOP�
is the problem of �nding a product sequence for a set
of matrices such that the total number of operations is
minimized�

An exhaustive search to �nd an optimal solution
for MCOP is not a good strategy since the number of
possible product sequences of a chain of matrix prod�
ucts with n matrices is ��n�n����� which is known
as the Catalan number ���� Let us refer to the time
required to �nd a product sequence for a chain of ma�
trices as the ordering time and the time required to
execute the product sequence as the evaluation time�
There are many works reported for solving MCOP and
for reducing the ordering time� MCOP was �rst re�
ported by Godbole ��� and solved using dynamic pro�
gramming in O�n�� time� Chin ��� suggested an ap�
proximation algorithm which runs in O�n� time for
�nding a near�optimal sequence� The optimal sequen�
tial algorithm� which runs in O�n log�n�� time� was
given by Hu and Shing ��� ��� This algorithm solves
MCOP by solving the equivalent problem of �nding
an optimal triangulation of a convex polygon�

Many parallel algorithms to reduce the order�
ing time have been studied using the dynamic pro�
gramming method ��� �� �� ��� and the convex poly�
gon triangulation method ���� ���� Bradford et
al� ���� proposed a parallel algorithm based on dy�
namic programming which runs in O�log��n�� time
with n� log�n� processors on the CRCW PRAM
model� Czumaj ���� proposed a O�log��n�� time algo�
rithm based on the triangulation of a convex polygon
which runs with n�� log��n� processors on the CREW
PRAM� Ramanan ���� gives an algorithm which runs
in O�log��n�� time using n processors� Most of the re�
cently proposed parallel algorithms run in polylog time
with a linear number of processors�

Now let us consider the evaluation time of a chain
of matrix products� In a single processor system� the
evaluation of a chain of matrix products by the opti�
mal product sequence guarantees the minimum evalua�
tion time since the sequence guarantees the minimum
number of operations� However� in parallel systems�
parallel computation of each matrix product with the
product sequence found for the minimum number of



operations does not guarantee the minimum evalua�
tion time� This is because that the evaluation time in
parallel systems is a	ected by various factors such as
dependencies among tasks� communication delays� and
processor e�ciency�

In this paper� we formally present the problem of
�nding the matrix product schedule for parallel sys�
tems �MCSP� and analyze the problem complexity of
MCSP� We propose an algorithm which �nds a ma�
trix product schedule that� while slightly increasing the
number of operations� decreases the evaluation time of
a chain of matrix products by �nding sets of matrix
products that can be executed concurrently�

This paper is organized as follows� Section
� presents the formal description of the processor
scheduling problem for a chain of matrix products and
shows that the given problem is NP�Hard� In Section ��
we propose a matrix chain scheduling algorithm which
dramatically reduces the evaluation time of a chain of
matrix products by using processors e�ciently in par�
allel systems and analyze the algorithm� In Section ��
we present the performance of the proposed method
and compare with that of sequential matrix products
ordered by the optimal product sequence for MCOP
using experiments on the Fujitsu AP���� parallel sys�
tem� Finally� in Section �� we summarize and conclude
the paper�

� MATRIX CHAIN SCHEDULING

PROBLEM

��� NOTATIONS
� P � the number of processors in a parallel system�

� M � a matrix chain product with n matrices� i�e��
M �M� �M� � � � � �Mn�

� Mi� an mi �mi�� matrix �mi � �� � � i � n��

� L � a product sequence tree for a matrix chainM�

� Li�j � the sequence subtree of L for �Mi�� � ��Mj��

� C � the minimum amount of computation for eval�
uatingM�

� ci�j�k � the amount of computation required for
multiplying mi � mj and mj � mk matrices�
�mimjmk��

� �C � the amount of increased computation by
modifying the current sequence tree�

� pi�j � the number of processors assigned for eval�
uating �Mi � � � � �Mj��

� Ti�j�pi�j�� the execution time for evaluating �Mi�
� � � �Mj� on pi�j processors�

� �� the execution time of single matrix product�

��� PROBLEM DESCRIPTION

We consider the problem of �nding the opti�
mal schedule with minimum evaluation time of M �
M��M�� � � � �Mn on a P processor parallel system�
The number of operations for multiplying a matrix A
of size mi � mj by a matrix B of size mj � mk is
mimjmk� Many parallel algorithms for matrix multi�
plication have been developed in various parallel ar�
chitectures ����� The execution time of matrix multi�

plication depends on the algorithm used and the ar�
chitecture on which the algorithm runs� However� for
more discussion� we assume that the execution time of
matrix multiplication is proportional to the number of
operations on a processor� Therefore� for multiplying
A by B matrices with p processors� the execution time
��mi�mj �mk� p� can be approximated as follows�

��mi�mj �mk� p� �

� mimjmk

p if � � p � mimk
mimjmk

p log� p
mimk

� otherwise

When pij processors are allocated for evaluating
�Mi � � � � �Mj�� the evaluation time consists of two
parts � the partial matrix chain evaluation time and
the single matrix product execution time� Two partial
matrix chains are �Mi � � �Mk� and �Mk�� � � �Mj� for
some k �i � k � j�� The evaluation time of two matrix
product chains is dependent on the evaluation method�
One method is to evaluate sequentially �Mi � � �Mk�
and �Mk�� � � �Mj� using all available processors in pij �
The other method is to evaluate both �Mi � � �Mk� and
�Mk�� � � �Mj� concurrently by partitioning pij into pi�k
and pk���j such that pi�k�pk���j � pij � The minimum
evaluation time Ti�j�pi�j� of �Mi � � �Mj� on pi�j proces�
sors is found from the following recurrence relation�

Ti�j�pi�j� � min
i�k�j

��Ti�k�pi�j� � Tk���j�pi�j��

��mi�mk���mj��� pi�j��

max
�
Ti�k�pi�k�� Tk���j�pk���j�

�
�

��mi�mk���mj��� pi�j�
��

The problem of �nding the schedule which results in
the minimum evaluation time T��n�P � is a problem of
�nding the best schedule ki�j for �Mi � � �Mj� with the
processor allocation pij to Li�j � Therefore� the MCSP
is de�ned as follows�

MCSP� �nd the product sequence for evaluating a
chain of matrix products and the processor schedule for
the sequence� where the evaluation time is minimized
on a parallel system�

��� MCSP COMPLEXITY

Consider the case in which there are su�cient pro�
cessors for multiplying any number of matrices concur�
rently� We assume that� for each matrix product which
multiplies an mi �mj matrix by an mj �mk matrix�
mimjmk processors are allocated and the computa�
tion time is log�mj�� The problem can be solved in
polynomial time using dynamic programming of the
recurrence relation�

Ti�j � min
i�k�j

��max�Ti�k� Tk���j� � log�mk���
��

Therefore� in the case of in�nitely many available pro�
cessors� the problem of �nding the schedule for evaluat�
ingM with the minimum execution time can be solved
using dynamic programming in polynomial time� i�e��
O�n��� However� in general� the number of available



processors is �xed and not su�cient to allocate the
requested number of processors for each product�

Now� let us consider the case when there are P
processors in a system� The complexity of MCSP is
shown in the following Theorem�

Theorem �� MCSP is a NP�hard problem�

In this paper� the proofs for all theorems and lem�
mas have been omitted due to lack of space� The in�
terested reader can obtain the proofs from ����

Since the problem of �nding an optimal schedul�
ing is NP�Hard� we propose an approximation algo�
rithm in Section �� The algorithm enhances the per�
formance of evaluating an n�matrix product chain on a
parallel system by partitioning the parallel system and
concurrently executing several matrix products� this
also enhances the overall e�ciency of the system�

� MATRIX CHAIN SCHEDULING

ALGORITHM

The proposed scheduling algorithm consists of
three stages� First� the algorithm �nds the optimal
product sequence for MCOP� Next is the top�down pro�
cessor assignment stage� In this stage� processors are
partitioned and assigned to each subtree proportion�
ally according to its computation amount to balance
the evaluation time of both left and right partial ma�
trix product chains� The third stage is the bottom�up
execution stage that executes products independently
from the leaf and tries to modify the product sequence
to enhance the concurrency so as to reduce the eval�
uation time ofM� This is done by �nding the points
that change the product sequence but do not increase
the number of operations excessively�

��� OPTIMAL PRODUCT SEQUENCE
BY MCOP

The product sequence ofM determines the num�
ber of operations to be executed in single processor sys�
tems� In parallel systems� the number of operations is
not the sole deciding factor of the evaluation time� but
a	ects it greatly nonetheless� Hence� our scheduling
algorithm begins with the optimal product sequence
found for MCOP� There were many works reported for
�nding the optimal product sequence which guaran�
teed the minimum number of operations for any chain
of matrix products� The optimal product sequence
can be found in O�n log�n�� time using a sequential
algorithm ��� ��� Many parallel algorithms have been
studied ���� ��� which run in polylog time� Therefore�
using these parallel algorithms� it is possible to �nd
the optimal product sequence within polylog time on
P processor systems�

Let us assume that the sequence and the compu�
tation amount found by MCOP is stored in two tables�
S�n��n� and W �n��n� respectively� W �i��j� has the min�
imum number of operations for evaluating Li�j � and
S�i��j� has the matrix index for partitioning the ma�
trix chain �Mi � � � � �Mj��
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Figure �� Top�down processor assignment�

��� TOP�DOWN PROCESSOR
ASSIGNMENT

In the top�down processor assignment stage� the
number of processors proportional to the computa�
tion amount of a subtree is assigned to minimize
the completion time of two partial matrix chains�
If pi�j processors were assigned to Li�j � then pi�j �

W �i��S�i��j��
�W �i��S�i��j���W �S�i��j�����j�� processors are assigned to

the subtree Li�S�i��j� and pi�j�
W �S�i��j�����j�

�W �i��S�i��j���W �S�i��j�����j��

processors are assigned to the subtree LS�i��j����j �

For example� given a chain of � matrices with di�
mensions f�� �� �� �� �� �� �� �� �g on a �� processor sys�
tem� processors are assigned as in Fig� ��

��� BOTTOM�UP CONCURRENT EX�
ECUTION

After assigning processors to each subtree� the
matrix products are executed concurrently and inde�
pendently from the leaf products� Thus� the per�
formance is improved by the concurrent execution
which results in the improvement of processor e��
ciency� However� there are cases in which some pro�
cessors stay idle� When there are idle processors in
the execution of Li�j � we try to modify the product
sequence to use these idle processors�

When there are idle processors in the execution
of Li�j � ancestors of the leaf node of Li�j are traced
in order to �nd a candidate for concurrent execu�
tion� This upward trace continues until a suitable
candidate or a sibling which is not a leaf node is
found� For example� let us consider the executing se�
quence tree L��	 shown in Fig� �� The �gure repre�
sents ���M��M��M����M�M
�M��M�����M�M	�� In
the execution of �M�M
��
the possible candidates for concurrent execution are
�M�M��� �M�M��� �M�M��� �MM	�� There are other
types of candidate products which are not considered
in this paper like �M�M�� Since such cases result in
more modi�cations to the optimal sequence with no
obvious bene�t over other candidates� we do not con�
sider these kinds of products�

When we modify the product sequence to execute
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Figure �� A sequence modi�cation�

candidate products concurrently in the current execu�
tion phase� then there is some loss due to an increase
in the number of operations� Therefore� we have to
check whether the modi�cation is bene�cial or not�

Consider a matrix chain with � matrices which
needs three matrix product to get the �nal result�
Assume that the optimal product sequence of this
matrix chain for MCOP is ���M�M��M��M��� as
shown in Fig� �� When the sequence is modi�ed to
��M�M���M�M���� the number of computations re�
quired changes from C � c����� � c����� � c����
 to
C � � c����� � c����
 � c����
� Therefore� the amount
of increased computation �C is as follows�

�C � c����
 � c����
 � c����� � c����


In general� when we have a product sequence like
Fig� �� the amount of increased computation for mul�
tiplying My �My�� concurrently with Mx �Mx�� is
as follows�

�C � my��my���my �mz� �mzmy�my�� �my���

In this equation� mz represents the row of the inter�
mediate matrix �or matrix Mz itself� that is going to
be multiplied with the result of My �My��� In other
words� there is a left parenthesis to the left of matrix
Mz that matches the right parenthesis on the right

)( )( )... ... ... ...( MM M M Mxz x+1 y y+1

Figure �� A snapshot of product sequence�

side of matrix My��� In case y � z� the amount of
increased computation is as follows�

�C � my��my���my�mz����mz��my�my���my���

Finding mz �or mz���� which is very important for the
analysis of �C� can be done by traversing the sequence
tree L� If both My and My�� are right children� then
Mz is searched by traversing the left child recursively
from the parent node of My� Similarly� if both are left
children� then Mz is searched by traversing the right
child from the parent node of My�

Lemma �� The evaluation time is reduced by mod�
ifying the sequence tree L when the candidate prod�
uct �MyMy��� satis�es �C � min���mx�mx���mx���
mxmx��� � �pi�j �mxmx���� cy�y���y����

If a candidate product �MyMy��� satis�es Lemma ��
then it would be better to change the product sequence
Li�j to multiply the candidate product concurrently
with �MxMx���� This means that the unallocated
idle processors can do more work than the increased
computation required by the change in the product se�
quence�

When the candidate product is found� the sub�
tree Li�j is modi�ed and the processors pi�j are re�
distributed among the products in Li�j �including the
candidate product�� Also� processors are allocated pro�
portionally to each product� Thus� the overall system
performance is enhanced by increasing the processor
e�ciency�

��� THE PROPOSED SCHEDULING
ALGORITHM

The proposed scheduling algorithm for evaluating
a matrix chain product is formulated as follows�

Two�Pass Matrix Chain Scheduling Algorithm

Stage�� MCOP

�� Find the optimal product sequence by a par�
allel algorithm for MCOP�

�� Generate the sequence tree L�

Stage�� Top�Down Processor Assignment

�� Initialize i � �� j � n� pi�j � P �

�� If i is not S�i��j�� then allocate pi�j �
W �i��S�i��j����W �i��S�i��j���W �S�i��j�����j��
processors to Li�S�i��j��

�� If j is not S�i��j� � �� then allocate pi�j �
W �S�i��j� � ���j���W �i��S�i��j�� �W �S�i��j� �
���j






