
Cneps: A Precise Approach for Examining Dependencies among
Third-Party C/C++ Open-Source Components

Yoonjong Na
Korea University

Seoul, Republic of Korea
nooryyaa@korea.ac.kr

Seunghoon Woo∗
Korea University

Seoul, Republic of Korea
seunghoonwoo@korea.ac.kr

Joomyeong Lee
Korea University

Seoul, Republic of Korea
security428@korea.ac.kr

Heejo Lee∗
Korea University

Seoul, Republic of Korea
heejo@korea.ac.kr

ABSTRACT

The rise in open-source software (OSS) reuse has led to intricate de-
pendencies among third-party components, increasing the demand
for precise dependency analysis. However, owing to the presence of
reused files that are difficult to identify the originating components
(i.e., indistinguishable files) and duplicated components, precisely
identifying component dependencies is becoming challenging.

In this paper, we present Cneps, a precise approach for examin-
ing dependencies in reused C/C++ OSS components. The key idea
of Cneps is to use a novel granularity called a module, which repre-
sents a minimum unit (i.e., set of source files) that can be reused as
a library from another project. By examining dependencies based
on modules instead of analyzing single reused files, Cneps can
precisely identify dependencies in the target projects, even in the
presence of indistinguishable files. To differentiate duplicated com-
ponents, Cneps examines the cloned paths and originating projects
of each component, enabling precise identification of dependencies
associated with them. Experimental results on top 100 C/C++ soft-
ware show that Cneps outperforms a state-of-the-art approach by
identifying twice as many dependencies. Cneps could identify 435
dependencies with 89.9% precision and 93.2% recall in less than 10
seconds per application on average, whereas the existing approach
hardly achieved 63.5% precision and 42.5% recall.

CCS CONCEPTS

• Software and its engineering→ Software libraries and repos-

itories.

KEYWORDS

Open Source Software Reuse; Supply Chain Security; Third-party
Library Dependency; Software Bill of Materials (SBOM).
∗Corresponding authors.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICSE ’24, April 14–20, 2024, Lisbon, Portugal
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0217-4/24/04. . . $15.00
https://doi.org/10.1145/3597503.3639209

ACM Reference Format:

Yoonjong Na, SeunghoonWoo, Joomyeong Lee, and Heejo Lee. 2024. Cneps:
A Precise Approach for Examining Dependencies among Third-Party C/C++
Open-Source Components. In 2024 IEEE/ACM 46th International Conference
on Software Engineering (ICSE ’24), April 14–20, 2024, Lisbon, Portugal. ACM,
New York, NY, USA, 12 pages. https://doi.org/10.1145/3597503.3639209

1 INTRODUCTION

The surge of open-source software (OSS) has accelerated third-party
OSS reuse, making software development more cost-effective. As
the prevalence of Open-Source Software (OSS) reuse grows, depen-
dency tracking becomes increasingly crucial in today’s software
development environment [3, 40]. Incorrect tracking of dependen-
cies can lead to security threats (e.g., vulnerability issues [1, 48]).
In addition, it is particularly important given the increasing sig-
nificance of uncovering supply chain transparency, as exemplified
by Software Bill of Materials (SBOM) [6, 7], which declares the
components and pieces that the software was built with.

However, for the following two main reasons, examining depen-
dencies in a precise manner is becoming challenging, especially in C
and C++ languages, where components are primarily reused at the
code level rather than those managed by package managers [38].

• Indistinguishable file: This refers to a source file, or occa-
sionally a function, that is widely used in various OSS projects
or cannot be clearly determined as belonging to a specific OSS
project (e.g., implementation of cryptographic functions).

• Duplicated component: This refers to a case where the
same OSS project is cloned in the target project multiple
times [12, 34, 46]. As an OSS project usually includes another
sub-component, the same OSS project can be duplicated in a
target project during the third-party OSS reuse process.

To examine dependencies comprehensively, it is essential to con-
sider the components that indistinguishable files belong to and the
dependencies that result from them. In addition, to reduce false
positives and negatives (e.g., misidentified or unidentified depen-
dencies), duplicated components should be differentiated and then
involved in dependency analysis. This is because unidentified de-
pendencies can cause vulnerabilities to remain untouched, allowing
threats to remain in the system [18, 32]. Furthermore, misidentified
dependencies can increase the time and effort required to resolve
potential security threats in target software [28].

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Yoonjong Na, Seunghoon Woo, Joomyeong Lee, and Heejo Lee

Existing code-based software composition analysis (SCA) tech-
niques (e.g., [10, 16, 31, 38]) overlook indistinguishable files, which
rarely contribute to identifying reused components, and duplicated
components, thereby producing many false positives and negatives
in dependency identification. For example, Centris [38] considers
only the unique functions of OSS projects and overlooks the remain-
ing reused files, resulting in missed dependencies. It also does not
consider duplicated components, thus yielding false dependencies
(see Section 2.3). On the other hand, several existing approaches
(e.g., [13, 24, 33, 48]) have attempted to identify dependencies based
on metadata (e.g., package manager files). However, in the C/C++
languages, third-party OSS reuse using package managers is not
actively pursued [31], and metadata may not exist in the target pro-
gram because partial OSS reuse is prevalent [38]. Therefore, these
approaches are insufficient for identifying dependencies precisely.

Proposing approach. In this paper, we presentCneps (Component
dependency scanner), which is a precise approach that can identify
dependencies in reused third-party OSS components (at the source
code level) while overcoming the aforementioned challenges.

The key idea of Cneps that clearly distinguishes it from existing
approaches is the use of a novel granularity called a module. A
module is a unit comprising a header file and a set of source files
that are reusable by importing the header file (see Section 2.1). In
other words, a module is a minimum subset of a reusable project
that can be reused as a library from another project.

To address indistinguishable files, Cneps performs a module-
level dependency analysis. First, Cneps constructs modules from
the target project’s codebase (see Section 3.1). Subsequently, Cneps
inspects the component from which a module has been cloned
and generates a module dependency graph (see Section 2.1). This
graph comprehensively includes code dependencies within a module
and library dependencies between modules (see Section 3.2). By
analyzing modules instead of examining individual files, Cneps can
identify the component where the entire module is cloned, thus
enabling the precise component identification and dependency
examination of modules with indistinguishable files.

Next, Cneps consolidates the generated module dependency
graphs to create a dependency graph for the entire input target
software (Section 3.3). This is achieved by integrating the nodes
(i.e., components) that commonly exist in multiple module depen-
dency graphs. To handle the duplicated component problem, Cneps
examines both the (1) cloned paths and (2) originating projects
of the target nodes, integrating only the nodes determined to be
non-duplicated components. Consequently, a dependency graph of
the input software is generated, including components of indistin-
guishable files, with duplicate components clearly differentiated.

Evaluation.We evaluated Cneps on 100 real-world popular C/C++
projects obtained fromGitHub. Although indistinguishable files and
duplicate components are prevalent, Cneps successfully identified
more than twice as many dependencies than the state-of-the-art
code-based SCA technique (i.e., Centris [38]). For the 100 target
projects, Cneps identified 534 dependencies with 89.9% precision
and 93.2% recall, whereas Centris identified only 345 dependen-
cies with 63.5% precision and 42.5% recall (see Section 4.1). Notably,

Cneps could precisely identify the components to which indistin-
guishable files belong, and differentiate duplicated components
with high accuracy (see Section 4.2).

Moreover, when we applied Cneps to 1,000 popular C/C++ soft-
ware with varying sizes, Cneps could generate a dependency graph
in an average of 8.22 seconds (see Section 4.3). The experimental
results, in which the elapsed time did not significantly increase even
when the code size of the input porject increased, demonstrated
that Cneps had sufficient scalability to be used in practice.

Contributions. This paper makes the following contributions:
• We present Cneps, a precise approach for analyzing depen-
dencies in reused OSS components. Notably Cneps can find
more dependencies than existing approaches by identifying
unnoted components and discovering their dependencies with
high accuracy.

• We investigated the impact of indistinguishable files and dupli-
cated components on precise dependency analysis, and devised
effective solutions to address these problems.

• Cneps, which has demonstrated higher accuracy and speed in
dependency analysis, can be effectively used to examine de-
pendencies in real-world software to prevent potential threats.

2 BACKGROUND

2.1 Term definitions

Basic terms. An OSS component refers to a distinct set of codes
cloned from an OSS project [16, 31, 38] (called a component for
short). OSS reuse refers to the process of cloning existing OSS codes
or importing OSS code for reuse in a library form. In addition,
component dependency indicates a state in which an OSS component
is reusing the code of another OSS component.

Granularity notations. We then clarify the granularity notations.
• Files. A file 𝐹 refers to a set of one or more functions (𝑓).

𝐹 = {𝑓1, 𝑓2, . . . , 𝑓𝑛} (𝑛 ≥ 1)

• Components. A component 𝐶 refers to a set of source files
reused from another OSS project.

𝐶 = {𝐹1, 𝐹2, . . . , 𝐹𝑛} (𝑛 ≥ 1)

• Projects. A project 𝑃 refers to source code that combines one
or more components and a set of files.

𝑃 = {𝐶1, 𝐶2, . . . ,𝐶𝑚} ∪ {𝐹1, 𝐹2, . . . , 𝐹𝑛} (𝑛,𝑚 ≥ 1)

Building on the aforementioned notations, we introduce new
granularity known as header and module for clarity.

• Headers. A header file 𝐹ℎ is an importable file that facilitates
the reuse of a subset of a project. Let 𝐻 represent a set of files
that can be reused by importing the header file 𝐹ℎ . A file that
imports 𝐹ℎ can reuse a set of files listed in 𝐻 as a library.

𝐻 = {𝐹1, 𝐹2, . . . , 𝐹𝑛} (𝑛 ≥ 1)

• Modules. A module 𝑀 is a unit that combines a header file
(𝐹ℎ) with a set of files that are reusable by importing the header
(𝐻).

𝑀 = {𝐹ℎ} ∪ 𝐻 = {𝐹ℎ, 𝐹1, 𝐹2, . . . , 𝐹𝑛} (𝑛 ≥ 1)
(where 𝐹ℎ and 𝐻 need to be cloned together)

Cneps: A Precise Approach for Examining Dependencies among Third-Party C/C++ Open-Source Components ICSE ’24, April 14–20, 2024, Lisbon, Portugal

Existing SCA
approaches

CNEPS

Indistinguishable
files

Duplicated
components

(unidentified dependencies) (misidentified dependencies)

Component Indistinguishable files Dependency Duplicated components

Figure 1: Illustration of challenges in dependency analysis.

Dependency graph. We represent component dependencies by
leveraging a graph-based structure. A dependency graph (𝐺) is a
directed graph, and is represented as 𝐺 = (𝐶 , 𝐸), where 𝐶 denotes
components and edge (𝐸 ⊆ 𝐶 ×𝐶) indicates the dependency direc-
tion. This edge includes dependencies generated by both code and
library (see Section 2.2). Note that a dependency graph can contain
cycles. An example dependency graph is illustrated in Figure 2.

2.2 Problem statement

In this paper, we address the problem of analyzing dependencies
among components. To express this more formally, let𝐶1 and𝐶2 be
two components in the target project. We can define the conditions
for dependency between two components as follows.

⋄Dependency between two components.

We define a component 𝐶1 has dependency on 𝐶2 if 𝐶1 and
𝐶2 satisfy one of the following two conditions.
(1) Code dependency. If a function 𝑓 in𝐶2 is cloned in a file

𝐹 in 𝐶1, we determine that 𝐶1 has a dependency on 𝐶2.
(2) Library dependency. If a file 𝐹 in 𝐶1 imports a header

file 𝐹ℎ from another component 𝐶2, we conclude that 𝐶1
has a dependency on 𝐶2.

However, identifying dependencies between components is diffi-
cult owing to the following two main challenges.

Indistinguishable files. Indistinguishable files refer to files that
exist widely in OSS projects, or cannot be clearly determined as
cloned from a specific component (e.g., cryptographic functions
and hash table). To analyze the dependencies precisely, the compo-
nents of indistinguishable files and the dependencies that arise from
these files should be considered. However, indistinguishable files
are widely present in various projects, making it difficult to identify
their components and thus complicating dependency analysis. Exist-
ing SCA approaches (e.g., [10, 16, 31, 38]) fail to properly determine
the components of indistinguishable files, thereby missing existing
dependencies. Figure 1 (i.e., indistinguishable files) illustrates the
missing dependency caused by indistinguishable files.

Duplicated components. Duplicated components exist when
the same project is reused in the target project multiple times [12,
34, 46]. In general, an OSS project contains many sub-components
within its codebase. Therefore, even when reusing a single OSS, in

Table 1: MongoDB dependency identification results of

Cneps and Centris. Note that 4,000 indistinguishable files

were detected in theMongoDB codebase.

Centris Cneps

#Total Dependencies 77
#Identified reused files 2,463 6,463

#Identified components 30 40

#Identified dependencies 40 82

#Correct dependencies (TP) 30 72

#Incorrect dependencies (FP) 10 10

practice, many other sub-components are also reused and a certain
OSS project may be unintentionally reused multiple times in the
target project. Existing SCA approaches do not distinguish between
duplicated components, resulting in false positives and negatives
in the dependency identification process. Figure 1 (i.e., duplicated
components) illustrates the false positive dependency produced by
duplicated components.

2.3 Motivating Example

To describe the importance of addressing the challenges, we intro-
duce a motivating example, the MongoDB case (latest version as
of July 2023). We applied Cneps and Centris (i.e., a code-based
SCA approach [38]) to MongoDB and examined the dependencies
identified by each approach (the method of applying Centris to
dependency identification is introduced in Section 4.1 in detail).

Figure 2 illustrates a part of the MongoDB dependency graph
identified by Cneps, where the solid black lines indicate depen-
dencies discovered in both approaches and the green dotted lines
indicate dependencies identified only by Cneps.

libunwindsnappy

MongoDB

Dependency in CNEPS and CENTRIS

Dependency identified only in CNEPS

zlib@zlib

zlib@zlibWrapper

Figure 2: Depiction of a part of MongoDB dependency graph.

Centris. Because Centris did not consider the indistinguishable
file and duplicated component problem, it misidentified several de-
pendencies (75% precision) and also overlooked a number of correct
dependencies. In the case of Centris, most of the indistinguishable
files that exist in MongoDB were not clearly identified as reused
code in a certain component. As shown in Table 1, Centris was
only able to identify 2,463 OSS files (38.1%) reused in MongoDB,
which prevented it from identifying dependencies that actually
exist in MongoDB (i.e., Centris missed at least 42 dependencies).

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Yoonjong Na, Seunghoon Woo, Joomyeong Lee, and Heejo Lee

In addition, Centris failed to address duplicated components,
yielding false positives and negatives. As shown in Figure 2, the
zlib OSS was reused twice in MongoDB: the original zlib and mod-
ified zlib (called zlibWrapper). Interestingly, the MongoDB team
was reusing zlibWrapper, which imports zlib as a library; that is,
zlibWrapper is linked to reuse zlib. Owing to these duplicate com-
ponents, Centris did not correctly identify dependencies on zlib,
reporting false positives and negatives.

Our proposed Cneps approach. By overcoming both challenges,
Cneps discovered 42 more dependencies (i.e., 72 dependencies) in
MongoDB than Centris. In particular, by leveraging module granu-
larity, Cneps could address the indistinguishable file issue and thus
identified 62% more reused files (i.e., 4,000 additional reused files)
than Centris. Thus, Cneps discovered two more dependencies that
existed in the indistinguishable files. For example, one of the indis-
tinguishable file in the snappy component had a dependency on
zlib, therefore, Centris failed to identify this dependency.

Moreover, through effective dependency graph generation and
consolidation techniques, Cneps could handle duplicate compo-
nents, resulting in the discovery of 10 more dependencies than
Centris. For example, three components inMongoDBwere reusing
zlib; if zlib and zlibWrapper are not clearly distinguished, this leads
to misidentified or unidentified dependency issues. Cneps could
differentiate these duplicate components, thus identifying more
dependencies than Centris with higher accuracy.

3 DESIGN OF CNEPS

In this section, we describe the design of Cneps, which is a precise
approach for identifying dependencies in C/C++ projects.

Overview. Figure 3 shows the workflow ofCneps, which comprises
three phases:module construction (P1), dependency graph generation
(P2), and graph consolidation (P3). In P1, Cneps constructs modules
from the input source code project. In P2,Cneps generates a module
dependency graph for each constructed module by considering the
dependencies established by both code and library dependencies.
By leveraging module granularity, Cneps can identify the compo-
nents in which indistinguishable files have been reused and their
dependencies. In P3, Cneps consolidates the module dependency
graphs, thereby completing the dependency graph of the input
software. Here, Cneps addresses duplicate components to generate
a more precise dependency graph.

3.1 Module construction (P1)

To identify the dependencies between components,Cneps first aims
to systematically construct modules for a given input software.

3.1.1 Module construction. We first clarify the term “module”.

⋄Module granularity.

We define the module𝑀 as a unit comprising a header file
(𝐹ℎ) and files that are reusable by importing the header (𝐻).
Note that these reusable files should be cloned together for
reuse and can be leveraged by importing the header file (e.g.,
using the “#include” command in C/C++ languages).

Source-code
Project

INPUT
Module

Module

…

P1. Module
construction

P2. Dependency
graph generation

Code &
library
reuse

analysis

Module
dependency

graph

Module
dependency

graph

Duplication
detection

&
graph

consolidation

OUTPUT

P3. Graph
consolidation

Dependency
graph

Code &
library
reuse

analysis

… …

Figure 3: High-level workflow of Cneps.

Module construction comprises the following three steps.
• First, Cneps parses all functions in a given target source code
project. In particular, Cneps parses the declarations and defini-
tions of all functions in the input software with the extensions:
c, cc, cpp, h, hpp, and hxx.

• Next, Cneps examines each source file to determine whether
it is a header file (𝐹ℎ) by examining the presence of function
declarations (𝑓𝑑𝑒𝑐).

• Using the function name and its parameters, Cneps attempts
to detect the corresponding function definitions. If a file 𝐹

contains a definition (𝑓𝑑𝑒𝑓) for 𝑓𝑑𝑒𝑐 , Cneps bundles 𝐹ℎ and 𝐹

into one module. Here, a function may exist only in the file 𝐹
with its definition, and its declaration may not be present in
other files. In this case, Cneps classifies 𝐹 as both a header and
a reusable file: Cneps bundles 𝐹 into a single module because
functions in 𝐹 remain reusable by importing 𝐹 .

As a working example, we introduce a c-ares case that is reused in
MongoDB (see Figure 4).WhenCneps parses the ares.h (i.e., header
file) in theMongoDB, we can identify many function declarations, in-
cluding the following three functions: ares_gethostbyaddr, ares_
timeout, and ares_free_string.

Next, Cneps discovers the definition of each function; in the
working example, the definitions for corresponding functions are
contained in ares_gethostbyaddr.c, ares_timeout.c, and ares_
free_string.c, respectively. Therefore, Cneps bundles the header
file (ares.h) and the aforementioned three files, each containing the
definition of a function, to create a single module. As a result, a sin-
gle module is generated, which can be reused as a standalone library
by importing the header file to access the following three functions:
ares_gethostbyaddr, ares_ timeout, and ares_free_string.

3.2 Dependency graph generation (P2)

Cneps generates dependency graphs using the constructedmodules.
Cneps examines code dependency through an internal examination
of modules (Section 3.2.1) and inspects library dependency by iden-
tifying components that import a header file of modules (Section
3.2.2). Finally, Cneps generates dependency graphs (Section 3.2.3).

3.2.1 Code dependency analysis. First, Cneps examines the
functions within a module to identify the components from which
this module is cloned. Here, Cneps leverages Centris [38], an ap-
proach for identifying reused C/C++ components in a target project.
Using Centris, we can identify whether functions in the target
project were cloned from other OSS; in other words, we can identify
(1) the functions reused from other OSS and (2) their originating

Cneps: A Precise Approach for Examining Dependencies among Third-Party C/C++ Open-Source Components ICSE ’24, April 14–20, 2024, Lisbon, Portugal

Listing 1: Example of the decla-

rations for the three functions in

ares.h ofMongoDB.
1 ...
2 CARES_EXTERN void
3 ares_gethostbyaddr...;
4 CARES_EXTERN struct timeval
5 *ares_timeout...;
6 CARES_EXTERN void
7 ares_free_string...;
8 ...

Listing 2: ares_gethostbyaddr
function defined in ares_gethost-
byaddr.c of the c-ares component.

1 void
2 ares_gethostbyaddr
3 (/* Paremeters */)
4 {
5 struct addr_query *aquery;
6 ...
7
8 }

Listing 3: *ares_timeout function

defined in ares_timeout.c of the

Curl component.

1 struct timeval
2 *ares_timeout
3 (/* Paremeters */)
4 {
5 struct query *query;
6 ...
7
8 }

Listing 4: ares_free_string
function defined in ares_free_
string.c (indistinguishable file).

1 void
2 ares_free_string
3 (/* Paremeters */)
4 {
5 ares_free(str);
6 // a single line function

7 }
8

Figure 4: An example of module construction for the ares.h file in the c-ares component reused inMongoDB.

OSS projects. Note that Centris is only used to identify the com-
ponents of distinguishable files and cannot identify components of
indistinguishable files or examine component dependencies.

Then, Cneps counts the number of functions cloned into the
module from each component. Based on the counting results, we
determine that the component with the highest number of reused
functions is the one from which the entire module was cloned
(called the prevalent component). As an additional validation to
support this decision, after initially identifying the prevalent compo-
nent of a module, Cneps verifies that the file 𝐹 containing function
declarations is present in the codebase of the prevalent compo-
nent. If not, Cneps performs the same task with the second-most
prevalent component. While repeating this task, the component
discovered first, which includes 𝐹 , becomes the component of this
module. Because indistinguishable files have been cloned together
from the codebase of the module, Cneps identifies the component
of indistinguishable files with the same component of the module
(further discussion on this method is provided in Section 5).

For example, among the three functions declared in the ares.h
file (see Figure 4), Cneps can identify that ares_gethostbyaddr
was cloned from c-ares and that ares_timeout was cloned from
Curl. The ares_free_string.c file including the single line ares_
free_string function does not belong to any component iden-
tified by Centris in MongoDB; thus, Cneps determines that it is
an indistinguishable file (i.e., its originating project is unknown).
In particular, the ares.h file in the module contains 23 functions
cloned from c-ares, seven functions reused from Curl, and 34 in-
distinguishable functions. After verifying that the ares.h file is
included in the c-ares codebase, Cneps determines this module is
cloned from c-ares and has a dependency on Curl as code depen-
dency. Because indistinguishable files are cloned together with the
module, Cneps identifies that the component of indistinguishable
files is c-ares.

3.2.2 Library dependency analysis. In addition to reused func-
tions at the code level, there are cases of reusing functions by
importing the header files of the module (e.g., using the “#include”
command). For all files belonging to a module, Cneps examines
whether a file is importing other header files as a library, which can
be performed by parsing strings. Note that the previous component
identification was performed on files within one module, whereas
library dependency analysis is performed between modules.

One issue we should consider is that there can be multiple files
with the same name in the input software codebase. For example,
when a library import statement named “#include <zlib.h>” is
found in file 𝐹 of MongoDB, there may actually be more than one

grpc Protobuf

Library reuse

c-ares Curl

Code reuse

Library reuse

Protobuf

(cloned path: mongo/src/third_party/protobuf)

(cloned path: mongo/src/third_party/grpc/dist/src)

c-ares

grpc

Protobuf

Curl

Protobuf

MongoDB

Duplicated
components

Consolidated dependency graph

Figure 5: Illustration of graph consolidation inMongoDB.

zlib.h file in the MongoDB codebase. In this case, it is necessary
to correctly determine which file to link with. To address this, we
follow the resolving rules of the GNU GCC compiler [5]. That is, for
every zlib.h, Cneps compares the paths of 𝐹 and zlib.h. For all
detected zlib.h occurrences, Cneps determines that zlib.h with
the path closest to the path of 𝐹 is an imported file.

3.2.3 Module dependency graph generation. By combining
the list of components, previously identified code dependencies, and
the relationships discovered through library dependency, Cneps
generates module dependency graphs.

Establishing code dependencies. First, for each module, Cneps
organizes a parent node representing the module’s component (see
Section 3.2.1). Next, based on the code dependency information
in a module, Cneps identifies the components that become child
nodes; Cneps connects the dependency (i.e., edge) from the parent
node to the child nodes. If the file 𝐹 where function declarations
are declared does not exist any component, Cneps does not find
parent-child relationships between components and does not con-
nect edges between nodes (i.e., independent nodes). In our working
example, two nodes are initially created: c-ares and Curl. Since we
confirmed that c-ares is a module component in Section 3.2.1, c-ares
becomes the parent node and Curl becomes the child node. Thus,
the dependency from c-ares to Curl is established (c-ares → Curl).

Establishing library dependencies. Next, Cneps considers li-
brary dependency. This task involves connecting two nodes in dif-
ferent modules. Suppose a file 𝐹 reused in a component 𝐶1 imports
a header file 𝐹ℎ of component 𝐶2 (i.e., #include <𝐹ℎ>). Then, the
dependency is connected from node 𝐶1 of the module to which 𝐹

belongs to node𝐶2 of the module to which 𝐹ℎ belongs. An example
of a dependency establishment is shown in Figure 5.

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Yoonjong Na, Seunghoon Woo, Joomyeong Lee, and Heejo Lee

After performing this task on all modules, several module depen-
dency graphs of the input target software are generated. However,
because there are overlapping and unconnected nodes (e.g., dead
code), a single dependency graph for the input software is created
by consolidating the module dependency graphs in P3 (Section 3.3).

One of the biggest advantages of Cneps is that it does not over-
look the dependencies generated by indistinguishable files. If we
identify components and dependencies based on each reused file or
function (i.e., using finer-grained granularity), we may miss some
dependencies because we cannot specify the components of indis-
tinguishable files. However, the module unit leveraged in Cneps is
a combination of a header file and a set of files that are reusable by
importing. In other words, the module is the smallest subset of the
project required to operate as a standalone library. Subsequently,
by analyzing components and dependencies in groups rather than
individual files or functions, we can identify the component where
the entire module is cloned (i.e., the prevalent component); hence,
even the dependencies of modules including indistinguishable files
can be identified.

3.3 Graph consolidation (P3)

Finally, Cneps constructs a dependency graph for the input project
by consolidating the constructed module dependency graphs.

Although a straightforward approach could be applied here (i.e.,
simply merging identical components), this may result in the pro-
duction of false alarms in the dependency analysis owing to dupli-
cated components (see Section 2.3).

To overcome this problem, Cneps uses the following approach.
Essentially, the same nodes (i.e., components) that exist in differ-
ent module dependency graphs are merged into one node. Herein,
Cneps identifies whether these components are identical compo-
nents sharing the same codebase or duplicated components utilizing
different codebases.

To this end, Cneps uses two features: (1) a cloned path and (2)
an originating project (i.e., a parent component). Suppose the two
components to be compared are 𝐶 and 𝐶′. Figure 6 illustrates the
flow chart of the graph consolidation process.

3.3.1 Cloned path comparison (S1). Cneps first compares the
directory paths where 𝐶 and 𝐶′ are cloned in the input target
software. Note that a node of a graph contains a list of reused files
(Section 3.2.1). Here, instead of considering each file path, Cneps
considers a common path for all reused files in each component. We
define a cloned path of a component as follows.

⋄Cloned path of a component.

We define the cloned path of the component𝐶 as the longest
common directory path among the reused file sets of 𝐶 .

For example, suppose component 𝐶 contains three reused files
(e.g., target/C/src/a.c, target/C/src/b.c, and target/C/src/
temp/c.h). Cneps splits the file path based on “/”, and then com-
pares each level from the root directory to the file path. Then,Cneps
extracts the common path with the longest length (i.e., target/C
/src/). This common path becomes the cloned path of 𝐶 .

If the cloned paths of𝐶 and𝐶′ are the same or have an inclusion
relationship (e.g., path(𝐶) ⊂ path(𝐶′)), Cneps determines that the

Compare C and C’

Merge C and C’

S1. Are the cloned
paths of C and C’ identical or

exhibit an inclusion
relationship?

S2-1. Are there
any common candidate originating

projects?

NO

YES

S2-2. Are there
any common files?

YES NO

Get next C’

Pass

NO

YES

Start

Figure 6: Illustration of the graph consolidation flow chart.

two components are cloned in the same path and are the same com-
ponent. Therefore, in the process of graph consolidation, the two
nodes 𝐶 and 𝐶′ are merged into one node. If not, their originating
projects are compared in the next step.

3.3.2 Originating project comparison (S2). Thereafter, Cneps
compares the originating projects of the two nodes (components)
to examine whether they are duplicated components.

In a code reuse relationship where a component is a child node
(e.g., Curl in Figure 5), the originating project can be easily identi-
fied as the parent node (i.e., c-ares in Figure 5). In this case, if the
originating projects (𝑃) of𝐶 and𝐶′ are identical, both𝐶 and𝐶′ are
considered to be cloned together with 𝑃 as sub-components, and
thus Cneps merges 𝐶 and 𝐶′ into one node.

However, when a component has a “library dependency” (e.g.,
Protobuf in Figure 5), it is difficult to clearly identify an originating
project because numerous nodes may have dependencies on the
corresponding component. To address this issue, Cneps identifies
candidate originating projects for the component. Cneps selects
nodes that satisfy the following two conditions as the originating
project candidates for a component: (1) they have a dependency
on the target component through a library dependency relation-
ship, and (2) they have a cloned path that is the same as or has an
inclusion relationship with the cloned path of the component.

Thereafter, Cneps verifies whether𝐶 and𝐶′ are duplicated com-
ponents as follows.

S2-1. First, Cneps examines whether the same component exists in
the candidate originating projects of 𝐶 and 𝐶′. If so, Cneps
performs S2-2 operations.

S2-2. Cneps then examines whether there are common files between
𝐶 and 𝐶′ (based on the file name) as additional verification. If
𝐶 and𝐶′ are the same component, we determine that the same
file name has already been created as one node during the mod-
ule construction phase. Nevertheless, if 𝐶 and 𝐶′ contain the

Cneps: A Precise Approach for Examining Dependencies among Third-Party C/C++ Open-Source Components ICSE ’24, April 14–20, 2024, Lisbon, Portugal

same file name, Cneps considers them duplicated components
and does not merge the𝐶 and𝐶′ nodes in graph consolidation.

For example, themodule dependency graphs in Figure 5 have two
Protobuf nodes. Here, we confirmed that their originating projects
are different (i.e., grpc and MongoDB), the cloned paths are differ-
ent, and even common files exist for both Protobuf components.
Therefore, Cneps determines that Protobuf nodes are duplicated
components, and does not merge them (see consolidated depen-
dency graph in Figure 5). This process is performed for all nodes
with the same name until no more components are mergeable. Fi-
nally, Cneps determines the consolidated dependency graph as the
dependency graph of the input software.

4 EVALUATION

In this section, we evaluate Cneps. In Section 4.1, we evaluate the
accuracy of Cneps. In Section 4.2, we evaluate the effectiveness
of Cneps and demonstrate the need to address indistinguishable
file and duplicated component problems. Finally, Section 4.3 in-
vestigates the performance and scalability of Cneps. We executed
Cneps on a machine equipped with an AMDRyzen 9 3900X 12-Core
3.8GHz Processor, 64GB RAM, and 1TB SSD, running Ubuntu 22.04.

Cneps architecture. Cneps comprises two subsystems: (1) a de-
pendency graph generator and (2) a graph consolidator. The depen-
dency graph generator constructs modules and generates a depen-
dency graph for each module. Here, Centris [38] is used to identify
reused functions, and Ctags [4] is leveraged to parse functions. The
graph consolidator merges the generated dependency graphs and
discovers duplicated components. Cneps is implemented with ap-
proximately 2,500 lines of Python code, excluding external libraries.
The source code of the Cneps is publicly available1.

4.1 Accuracy of Cneps

Dataset. To evaluate the accuracy of Cneps, we selected target
projects based on the following criterion: real-world OSS to which
many people actively contribute, thus having a high probability
of containing complicated dependencies. We chose GitHub, one of
the most popular OSS hosting services. Based on the number of
stargazers (i.e., a popularity indicator on GitHub), we selected the
top 100 C/C++ OSS as the target software. Next, we constructed
an OSS dataset to identify dependencies by analyzing the depen-
dencies in the target project. We leveraged a dataset composed of
all functions from all versions of more than 10,000 popular C/C++
OSS projects on GitHub, provided by Centris.

Evaluation methodology. The accuracy of Cneps is measured
by examining the edges (i.e., dependencies) in the dependency
graphs. We compared Cneps with a state-of-the-art approach (i.e.,
Centris [38]), which is capable of discovering components that
a source code project depends on. Because the output of Centris
is not a graph-based structure, we implemented a tool that uses
Centris results to generate a graph, where nodes indicate the
components identified by Centris and edges represent the depen-
dencies between the input software and all identified components.
1https://github.com/sodium49/CNEPS-public

Centris provides dependencies between the target project and
its components but does not provide dependencies between reused
components. To ensure fair comparisons, we implemented the same
principle that Centris used to establish the ground truth for iden-
tifying dependencies between components: we considered compo-
nent dependencies identifiable in Centris through reused file path
analysis. For example, suppose that Centris identifies 𝐶 and 𝐶′

components in the target project. If the names of𝐶′ are included in
any paths of reused files identified in𝐶 (e.g., target/𝑪/thirdParty
/𝑪 ′/a.c), then we determine that 𝐶 has a dependency on 𝐶′, and
the two nodes are connected in the graph (𝐶 → 𝐶′). For each target
project, we compared the dependency graphs generated by Cneps
and Centris and measure the accuracy of each tool.

To evaluate accuracy, we used the following five metrics: true
positives (TP), false positives (TP), false negatives (FN), precision
(𝑃 = #𝑇𝑃/(#𝑇𝑃 + #𝐹𝑃)), and recall (𝑅 = #𝑇𝑃/(#𝑇𝑃 + #𝐹𝑁)). FPs
indicate the misidentified dependencies between two components
(i.e., one component does not depend on the other). In contrast, FNs
refer to unidentified dependencies (i.e., one component depends
on another component but the dependency is not established). We
only consider FNs in which the components are included in the
graph but the correct dependency between the components does
not exist.

Specifically, we implemented a monitoring system to verify the
results of Cneps. This system tracks two main aspects: (1) source
files involved in dependencies (code and library dependencies), and
(2) every header file that each component’s source file attempts to
import (i.e., using #include directives); the former are monitored
to verify FPs, and the latter are investigated to assess FNs of Cneps.
The detection results of Cneps were manually verified by two se-
curity analysts over two days. We analyzed the results of Cneps
by examining the files tracked by the monitoring system and also
manually investigating the source code of components. Finally, the
results were evaluated through cross-checking.

Overall result. Table 2 and Figure 7 summarize the dependency
examination results of Cneps and Centris. In general, as the num-
ber of nodes in the dependency graph increases, the dependency
relationship becomes more complex, and more edge-case dependen-
cies occur. As a result, the dependency identification accuracy of
each tool decreases slightly. Nevertheless, we observed that Cneps
significantly outperformed Centris; Cneps identified 534 depen-
dencies from the 100 target projects with 89.9% precision and 93.2%
recall, whereas Centris discovered 345 dependencies with 63.5%
precision and 42.5% recall. Table 3 shows dependencies identified
by Cneps and Centris from target projects with 10 or more nodes
in their graph.

Accuracy of Centris. We observed that Centris overlooked
many existing dependencies in the target projects (296 FNs). The
main reason is that Centris does not consider indistinguishable
files and duplicated components; these challenges respectively led
to 57 and 50 cases of Centris failing to detect dependencies in
the target projects (see Section 4.2). Also, Centris is an approach
specialized in detecting code dependency; its inability to detect
dependencies caused by library dependency also contributed to the
high number of FNs.

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Yoonjong Na, Seunghoon Woo, Joomyeong Lee, and Heejo Lee

Table 2: Dependency examination accuracy of Cneps and Centris for the 100 target projects.

Approach

Graph

classification
∗

#Included

nodes

#Identified

reused files

#Identified

dependencies

#TPs #FPs #FNs Precision Recall

Centris Small 68 8,843 17 11 6 0 64.7% 100%
Moderate 21 7,741 102 56 46 52 54.9% 51.9%
Large 11 23,998 226 152 74 244 67.3% 38.4%
Total 100 40,582 345 219 126 296 63.5% 42.5%

Cneps Small 68 18,212 11 11 0 0 100% 100%
Moderate 21 15,160 108 106 2 2 98.1% 98.1%
Large 11 41,821 415 363 52 33 87.5% 92.8%
Total 100 75,193 534 480 54 35 89.9% 93.2%

∗: Graph classification according to the number of nodes contained in the graph (Small: one node; Moderate: 2-9 nodes; Large: 10 or more nodes).

#TP

(a) #TPs, #FPs, and #FNs
#FP #FN Precision Recall

(b) Precision and recall

219

126

296

480

54 35

0

100

200

300

400

500

CENTRIS CNEPS

0.635

0.425

0.899 0.932

0

0.2

0.4

0.6

0.8

1
CENTRIS CNEPS

Figure 7: #TPs, #FPs, #FNs, precision, and recall of each tool.

Moreover, Centris generated 126 FPs in dependency identifi-
cation (63.5% precision). Many FPs appeared because Centris did
not differentiate duplicated components, as we argued throughout
this paper. Also, if a component is a sub-component of another
component, Centris did not consider this case, thus generating
FPs. For example, in the MongoDB case in Figure 5, while MongoDB
has a dependency on grpc, it did not have a direct dependency on
c-ares and Curl, which are sub-components of grpc. In this case,
Centris misidentifies that MongoDB has direct dependencies on
all of grpc, c-ares, and Curl, resulting in producing FPs.

Accuracy ofCneps. Cneps could achieve higher dependency anal-
ysis accuracy than Centris by effectively addressing indistinguish-
able files and duplicated components (see Section 4.2).

Although Cneps outperforms the existing approach, several FPs
and FNs occurred. The main cause of FPs and FNs is an error that oc-
curs during the module construction process. As will be introduced
in detail in Section 4.2, an error that occurs in module construction
can result in incorrectly identifying the component of indistin-
guishable files and failing to differentiate duplicated components,
thus generating FPs and FNs in dependency analysis. Also, FPs and
FNs were produced owing to errors in resolving the exact target of
“#include” directives. Our method of detecting the target header
file according to the rules of the GNU GCC compiler (see Section
3.2) may generate false alarms if the target header file is not in-
cluded in the codebase (e.g., system library) or if there are multiple
header files with the same name. This can unintentionally cause
false alarms in library dependency analysis.

Table 3: Dependency examination results of Centris and

Cneps for 11 large projects.

Project

#Total
Dependencies

Centris Cneps
#Nodes∗ #Deps∗∗ #Nodes∗ #Deps∗∗

MongoDB 77 30 30 40 72
Hhvm 72 16 26 27 63
Linux 62 11 18 22 59
Tasmota 38 21 18 31 31

Srs 32 8 10 14 28
Godot 29 16 16 20 28

Winget-cli 21 12 9 12 18
Emscripten 20 7 8 16 19
Radare2 18 10 8 10 18
OpenCV 16 10 2 16 16
Php-src 11 4 7 9 11
Total 396 145 152 217 363

∗: The number of nodes when considering only correctly identified components.
Cneps successfully differentiates duplicated components while Centris does not.
∗∗: The number of correctly identified dependencies.

Case study: A dependency in the Linux kernel. In real-world
software, dependencies are not always one-directional, posing chal-
lenges for dependency analysis. Here, we present a case detected
by Cneps where a dependency changes during the reuse of other
components. As shown in Listing 5, the lz4.c file, whose originat-
ing project is lz4, was reused in the Linux kernel. Because the Linux
kernel reused lz4, the dependency from the Linux kernel to lz4 was
essentially created (i.e., kernel → lz4). However, after this lz4.c file
was reused, it was modified to have dependencies on header files
existing in the Linux kernel(i.e., init.h and lz4.h), resulting in a
newly generated dependency of opposite direction (i.e., lz4 → ker-
nel). If only code dependencies are considered, the dependency of
lz4→kernel (i.e., library dependency) would go undetected. On the
other hand, if only library dependencies are considered, the depen-
dency of kernel→lz4 would not be identified. By considering both
dependencies and by leveraging module granularity, Cneps can
precisely analyze component dependencies even in such situations
where dependencies are intricately woven.

Listing 5: Code snippet of the lz4.c file reused in the Linux kernel.
1 ...
2 #include <linux/init.h>
3 #include <linux/lz4.h>
4 ...

Cneps: A Precise Approach for Examining Dependencies among Third-Party C/C++ Open-Source Components ICSE ’24, April 14–20, 2024, Lisbon, Portugal

Dependencies associated with indistinguishable files

Dependencies associated with duplicated components

Dependencies associated with
both indistinguishable files and duplicated components

Dependencies not related to our challenges

57%

16%

21%

6%

Dependency coverage
of existing approaches

Figure 8: Distribution of dependencies affected by indistin-

guishable files and duplicated components in 1,000 popular

GitHub projects.

4.2 Effectiveness of Cneps

To demonstrate the importance of addressing indistinguishable file
and duplicated component problems in dependency analysis, we
performed the following two evaluations for each challenge.

(1) Impact of indistinguishable files and duplicated com-

ponents.We examined the ratio of dependencies that were
affected by indistinguishable files and duplicated components.

(2) Efficacy of Cneps. We evaluated the accuracy of Cneps in
identifying components for indistinguishable files and differ-
entiating duplicated components.

4.2.1 Impact of our challenges in OSS ecosystems. We first
investigated the impact of two challenges that make dependency
analysis difficult in real-world OSS ecosystems. To do this, we col-
lected 1,000 popular C/C++ OSS projects from GitHub (based on the
number of stargazers) and executed Cneps on the collected projects.
Here, rather than measuring the accuracy of dependency detection,
we focused on identifying the distribution of dependencies existing
in indistinguishable files and duplicated components.

Figure 8 shows the examination results. Notably, we observed
22% (i.e., 16%+6%) of dependencies are detected from indistinguish-
able files, and 27% (i.e., 21%+6%) of dependencies are detected from
duplicated components. We confirmed that 6% of the dependencies
could only be identified correctly by resolving both challenges. In
other words, existing approaches that do not overcome the two
challenges we present only identify up to 57% of total dependencies;
even this can only be achieved by considering both code and library
dependencies comprehensively.

Therefore, the aforementioned two challenges should be ad-
dressed in dependency analysis. Notably, Cneps demonstrated its
high accuracy by effectively resolving these challenges during the
accuracy evaluation. In the following sections, we describe a more
detailed analysis of the effectiveness of Cneps in resolving both
challenges.

4.2.2 Addressing indistinguishable files. First, we introduce
the number of dependencies related to indistinguishable files that
appeared in the accuracy evaluation and how effectively Cneps
resolved them. Table 4 summarizes the results of experiments.

Table 4: Accuracy of Cneps in identifying components of

indistinguishable files.

Approach

#Identified

reused files

#Identified indis-

tinguishable files

#TP
†

#FP
‡
Precision

Cneps 75,193 34,611 31,681 2,930 91.5%

†: Cneps identifies the correct component for the indistinguishable files.
‡: Cneps identifies the incorrect component for the indistinguishable files.

Table 5: Accuracy ofCneps in differentiating duplicated com-

ponents.

Approach
#All com-

ponents

#Unique

components

#Duplicated

components

#TP
†
#FP

‡
Precision

Cneps 297 257 40 33 7 82.5%

†: Cneps successfully differentiates duplicated components.
‡: Cneps does not merge nodes even though they are not duplicated components.

We confirmed that a total of 34,611 indistinguishable files (46% of
all reused files) were discovered in the 100 target projects in Section
4.1. It is worth noting that the dependencies generated from these
indistinguishable files account for 11% (57 dependencies) for all
identified dependencies.

Cneps could identify the correct components of the indistin-
guishable files in most cases (91.5%) by considering module-level
granularity (see Section 3.2). In particular, the approach of Cneps
to detect prevalent components of a module was demonstrated to
be highly effective in practice.

However, Cneps produced several FPs. The FPs mainly occur
when the definition of a function is misidentified in module con-
struction. During module construction,Cneps detects the definition
of a function using the function names and parameters obtained
from function declarations. However, if there are multiple func-
tions with the same function name and parameters, errors may
arise in the module construction process, leading to the incorrect
identification of components for indistinguishable files.

Because the dependencies generated from these indistinguish-
able files account for a considerable portion of the 100 target projects,
we can demonstrate the efficiency of Cneps, which is capable of
identifying the components to which indistinguishable files belong
and their dependencies.

4.2.3 Addressing duplicated components. We then evaluate
the efficacy of Cneps in terms of addressing duplicated components.

Because there is no ground truth for duplicated components, we
determined TPs and FPs using the cloned path of each component
(see Section 3.3). For example, suppose Cneps determined that two
zlib projects are duplicated components. If the cloned paths of two
zlib projects are different, we determine them as duplicated compo-
nents because they were cloned from different projects. However,
if the cloned paths are the same but Cneps identifies the two zlib
projects as duplicated components, we consider this case an FP.
Also, we excluded components that are identified from the input
project (e.g., MongoDB in MongoDB) as they can not be duplicated.

Table 5 shows the evaluation results. In the 100 target projects,
Cneps identified 297 components, of which 257 were unique com-
ponents; 40 were determined to be duplicated. Among them, we

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Yoonjong Na, Seunghoon Woo, Joomyeong Lee, and Heejo Lee

confirmed that 33 components (82.5%) were actually duplicated
(TPs). By differentiating these 33 duplicated components, Cneps
identified 50 more dependencies compared to Centris in Section
4.1.

The main cause of FPs, similar to the reason for FPs of the in-
distinguishable file problem, was the incorrect identification of
function definitions during module construction. Incorrect identi-
fication of the function definition results in the wrong file being
included in the module, which causes the cloned path of the module
to be incorrectly identified, thereby producing an error in differ-
entiating duplicated components. Although there were some FPs,
Cneps could precisely differentiate duplicated components in most
cases, which allowed it to identify more dependencies, thereby
demonstrating its efficacy.

4.3 Performance and scalability

We then evaluate the performance and scalability of Cneps. To do
this, we executed Cneps on 1,000 popular GitHub C/C++ projects
(based on the number of stargazers) with varying code sizes, ranging
from less than 10 to more than 31 million Lines of Code (LoC). We
measured the total time elapsed forCneps to generate a dependency
graph for an input C/C++ source code project, excluding the time
taken for executing Centris.

101 102 103 104 105 106 107

El
ap

se
d

 T
im

e
(s

)

Lines of Code (log scaled)

100 108

500
600
700

400
300
200
100
0

800

Figure 9: Execution time of Cneps on 1,000 target projects.

Figure 9 shows the measurement results. Remarkably, we ob-
served that Cneps took an average of 8.22 s to examine the de-
pendencies of an input project (the median value was 1.12 s). The
scalable design of Cneps enables rapid dependency analysis; Cneps
scans the target project codebase only once during the dependency
analysis. In this scanning process, Cneps extracts all necessary
information, including functions, file paths, and “#include” di-
rectives. Additionally, Cneps utilizes a high-performance function
parser (i.e., Ctags). Because of its scalable design,Cneps can analyze
the dependencies of the target project within an average of 10 s.
It is noteworthy that the time required for Cneps did not increase
significantly even when the code size of the input project increased.
The fact that Cneps could identify dependencies between compo-
nents within 10 s even with millions of LoC input projects indicates
that Cneps has sufficient speed for practical use.

5 DISCUSSION

In this section, we discuss several considerations related to Cneps,
including its applications and limitations.

Application.We first discuss the possible applications of Cneps:
vulnerability management and SBOM generation.

• Vulnerabilitymanagement:Many existing approaches have
attempted to detect vulnerable codes propagated by third-party
OSS reuse (e.g., [19, 36, 41]). However, in practice, not every
identified vulnerable code is prioritized for management at the
moment of disclosure, especially if it has not been verified as
exploitable [18, 43, 44]. Currently, exploitability assessments
rely on manual analysis by security experts [40], necessitating
the need for a rapid triage approach. Given the importance of
precise dependency analysis in exploitability assessments [18],
the inclusion of Cneps in the vulnerability detection process
allows for swift triage in vulnerability management.

• SBOM Generation: The challenge of providing accurate de-
pendency information often complicates the SBOM (Software
Bill of Materials) generation [2, 7, 40]. Cneps, delivering pre-
cise dependency details for a specified source code project,
stands out as a valuable tool in this regard. It can significantly
enhance the accuracy and reliability of the SBOM, ensuring
that component dependencies are precisely represented.

Module component identification.When Cneps identifies the
component where a module is cloned, it investigates the number
of reused files for components associated with the module. Con-
sequently, the component to which the highest number of reused
files belong is determined as the prevalent component of the mod-
ule. To reinforce the rationale behind our decision, we perform
additional verification to ensure that the file containing function
declarations in the module belongs to the prevalent component
(see Section 3.2). However, in practice, the prevalent component of
the module may be incorrectly determined even though the two
conditions are satisfied. Although this case has not been observed
in our experiments, with the process of experimenting with various
target projects in the future, we plan to identify the components
from which the module was cloned in a more sophisticated way
(e.g., analysis of call relationships between functions in modules).

Threats to validity. While we employed a monitoring system
to minimize human errors in result verification, we acknowledge
the possibility of misidentifying TPs and FPs, as well as the risk
of overlooking dependencies in the target project (FNs). Also, to
the best of our knowledge, no ground truth data are available that
exhibit the originating project of indistinguishable files included
in our dataset. As it is challenging to determine the component
indistinguishable files belong to, there might be a possibility of
undiscovered false alarms in our analysis. In addition, we used
more than 10 K OSS projects in our experiments (i.e., leveraging the
dataset of Centris), but this dataset might not fully represent the
diversity and breadth of OSS projects. Lastly, we utilized Centris
to show the accuracy of Cneps in dependency analysis; however,
the purpose of Centris is to precisely detect uniquely identifiable
reused components, not on detecting component dependencies. Our
intention is not to discredit the original purpose of Centris but to
demonstrate that Cneps performs better in dependency analysis in
the presence of indistinguishable files and duplicated components.

Cneps: A Precise Approach for Examining Dependencies among Third-Party C/C++ Open-Source Components ICSE ’24, April 14–20, 2024, Lisbon, Portugal

Limitations.Althoughwe demonstrated the effectiveness ofCneps,
it contains several limitations that can limit its application.

First, Cneps can analyze dependencies only when the source
code of the target project is provided. Second, although we follow
the rules of the GNU GCC compiler, Cneps may fail or detect an
incorrect header path in the process of resolving “#include” di-
rectives. For example, when multiple header files with the same
name exist in the same path distance, Cneps fails to differentiate
the header files, thereby producing false alarms (see Section 4.1). To
overcome this problem, we are planning to devise a new resolving
technique, such as utilizing metadata [11, 23] (e.g., build scripts) or
leveraging control and data flow analysis approaches (e.g., LLVM
and SVF [20, 30]). Last, because Cneps uses Centris in its compo-
nent analysis, it cannot identify dependencies on components that
Centris fails to detect. In the future, if a more precise and practical
tool is developed, we plan to use it alongside our own proprietary
component identification algorithm.

6 RELATEDWORKS

Software composition analysis approaches. Several approaches
have attempted to detect reused OSS components using unique char-
acteristics [10, 16, 21, 27, 31, 38, 47]. For example,Centris [38] aims
to identify modified OSS components by focusing on the unique
functions of OSS projects, combined with code segmentation and
redundancy elimination techniques. LibD [21] utilizes feature hash-
ing to detect reused third-party libraries. Additionally, some ap-
proaches attempted to detect reused OSS components from binary
software [10, 42, 45]. For example, OSSPolice [10] identifies reused
third-party libraries by comparing similarities between binaries.
However, these approaches fail to address indistinguishable file and
duplicated component problems, and thus yield false positives and
negatives in dependency analysis (see Section 4.1).

Several approaches focus on analyzing precise dependencies
across various package management systems, such as Node Pack-
age Manager (NPM) [8, 9, 13, 24, 33, 48]. In recent work, Liu et
al. [24] proposed an approach to analyze vulnerability propagation
in the NPM ecosystem by resolving dependency graphs includ-
ing transitive sub-components. However, metadata (e.g., package
dependency files) is not always available [26, 39] for every compo-
nent especially when the component is partially reused or modified,
which is prevalent in the C/C++ ecosystem [31, 38]. Therefore, they
are not suitable for solving our target problem.

Code clone detection approaches. Several approaches have been
proposed to identify code clones within source code projects [15,
17, 25, 29]. Additionally, some approaches have employed code
clone detection techniques to identify vulnerabilities [14, 19, 22, 35–
37]. However, there is a gap between code clone detection and
dependency analysis, and an efficient algorithm should be devel-
oped to bridge this gap. Therefore, although code clone detection
approaches can be used together with Cneps to provide a more
effective vulnerability management process, they are difficult to be
used in dependency analysis directly.

7 CONCLUSION

With the growth of OSS reuse, precisely examining dependencies
among reused components has become critical in preventing poten-
tial threats in software. Accordingly, we present Cneps, which is a
precise approach that analyzes dependencies among reused compo-
nents by addressing indistinguishable files and duplicated compo-
nent problems. Our evaluation showed that Cneps outperformed
existing SCA approaches in dependency analysis by achieving 89.9%
precision and 93.2% recall. Cneps can be applied to manage risks by
helping understand potential risks associated with dependencies;
thus, it can be used to render a safer software ecosystem. The source
code of Cneps, all datasets, and the experimental results will be
rendered publicly available at the publication time to foster future
research.

8 ACKNOWLEDGMENTS

This work was supported by ICT Creative Consilience Program
through the Institute of Information & Communications Technol-
ogy Planning & Evaluation(IITP) grant funded by the Korea govern-
ment(MSIT) (No.2022-0-00277, Development of SBOMTechnologies
for Securing Software Supply Chains, No.2022-0-01198, Conver-
gence Security Core Talent Training Business(Korea University),
and IITP-2024-2020-0-01819, ICT Creative Consilience program).

REFERENCES

[1] 2021. State of the Software Supply Chain. https://www.sonatype.com/resources/
state-of-the-software-supply-chain-2021

[2] 2022. The State of Software Bill of Materials (SBOM) and Cybersecurity Readi-
ness. https://www.linuxfoundation.org/research/the-state-of-software-bill-of-
materials-sbom-and-cybersecurity-readiness

[3] 2023. 2023 State of Open Source Security. https://go.snyk.io/state-of-open-
source-security-report-2023

[4] 2023. Ctags: Universal Ctags. https://github.com/universal-ctags/ctags
[5] 2023. GCC: the GNU Compiler Collection. https://gcc.gnu.org/
[6] 2023. Software Bill of Materials (SBOM). https://www.cisa.gov/sbom
[7] 2023. Software Identity: Challenges and Guidance. https://www.ntia.gov/page/

software-bill-materials
[8] Alexandre Decan, Tom Mens, and Eleni Constantinou. 2018. On the impact of

security vulnerabilities in the npm package dependency network. In Proceedings
of the IEEE/ACM 15th international conference on Mining Software Repositories
(MSR). 181–191.

[9] Jens Dietrich, David Pearce, Jacob Stringer, Amjed Tahir, and Kelly Blincoe.
2019. Dependency Versioning in the Wild. In Proceedings of the IEEE/ACM 16th
International Conference on Mining Software Repositories (MSR). 349–359.

[10] Ruian Duan, Ashish Bijlani, Meng Xu, Taesoo Kim, and Wenke Lee. 2017. Identi-
fying Open-Source License Violation and 1-day Security Risk at Large Scale. In
Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security (CCS). 2169–2185.

[11] Gang Fan, Chengpeng Wang, Rongxin Wu, Xiao Xiao, Qingkai Shi, and Charles
Zhang. 2020. Escaping Dependency Hell: Finding Build Dependency Errors
with the Unified Dependency Graph. In Proceedings of the 29th ACM SIGSOFT
International Symposium on Software Testing and Analysis (ISSTA). 463–474.

[12] KaifengHuang, Bihuan Chen, Bowen Shi, YingWang, Congying Xu, and Xin Peng.
2020. Interactive, Effort-Aware Library Version Harmonization. In Proceedings
of the 28th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering (ESEC/FSE). 518–529.

[13] Abbas Javan Jafari, Diego Elias Costa, Rabe Abdalkareem, Emad Shihab, and Niko-
laos Tsantalis. 2021. Dependency Smells in JavaScript Projects. IEEE Transactions
on Software Engineering 48, 10 (2021), 3790–3807.

[14] Jiyong Jang, Abeer Agrawal, and David Brumley. 2012. ReDeBug: Finding Un-
patched Code Clones in Entire OS Distributions. In 33rd IEEE Symposium on
Security and Privacy (SP). 48–62.

[15] Lingxiao Jiang, Ghassan Misherghi, Zhendong Su, and Stephane Glondu. 2007.
DECKARD: Scalable and Accurate Tree-based Detection of Code Clones. In
Proceedings of the IEEE/ACM 29th International Conference on Software Engineering
(ICSE). 96–105.

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Yoonjong Na, Seunghoon Woo, Joomyeong Lee, and Heejo Lee

[16] Ling Jiang, Hengchen Yuan, Qiyi Tang, Sen Nie, Shi Wu, and Yuqun Zhang.
2023. Third-Party Library Dependency for Large-Scale SCA in the C/C++ Ecosys-
tem: How Far Are We?. In Proceedings of the 32nd ACM SIGSOFT International
Symposium on Software Testing and Analysis (ISSTA). 1383–1395.

[17] Toshihiro Kamiya, Shinji Kusumoto, and Katsuro Inoue. 2002. CCFinder: A
Multilinguistic Token-Based Code Clone Detection System for Large Scale Source
Code. IEEE transactions on Software engineering 28, 7 (2002), 654–670.

[18] Hong Jin Kang, Truong Giang Nguyen, Bach Le, Corina S Păsăreanu, and David
Lo. 2022. Test Mimicry to Assess the Exploitability of Library Vulnerabilities.
In Proceedings of the 31st ACM SIGSOFT International Symposium on Software
Testing and Analysis. 276–288.

[19] Seulbae Kim, Seunghoon Woo, Heejo Lee, and Hakjoo Oh. 2017. VUDDY: A
Scalable Approach for Vulnerable Code Clone Discovery. In 38th IEEE Symposium
on Security and Privacy (SP). 595–614.

[20] Chris Lattner and Vikram Adve. 2004. LLVM: A Compilation Framework for
Lifelong Program Analysis & Transformation. In Proceedings of the International
Symposium on Code Generation and Optimization (CGO). 75–86.

[21] Menghao Li, Wei Wang, Pei Wang, Shuai Wang, Dinghao Wu, Jian Liu, Rui Xue,
and Wei Huo. 2017. LibD: Scalable and Precise Third-party Library Detection
in Android Markets. In IEEE/ACM 39th International Conference on Software
Engineering (ICSE). 335–346.

[22] Zhenmin Li, Shan Lu, Suvda Myagmar, and Yuanyuan Zhou. 2006. CP-Miner:
Finding Copy-Paste and Related Bugs in Large-Scale Software Code. IEEE Trans-
actions on Software Engineering 32, 3 (2006), 176–192.

[23] Nándor Licker and Andrew Rice. 2019. Detecting Incorrect Build Rules. In
Proceedings of the IEEE/ACM 41st International Conference on Software Engineering
(ICSE). 1234–1244.

[24] Chengwei Liu, Sen Chen, Lingling Fan, Bihuan Chen, Yang Liu, and Xin Peng.
2022. Demystifying the Vulnerability Propagation and Its Evolution via De-
pendency Trees in the NPM Ecosystem. In Proceedings of the 44th International
Conference on Software Engineering (ICSE). 672–684.

[25] Cristina V Lopes, Petr Maj, Pedro Martins, Vaibhav Saini, Di Yang, Jakub Zitny,
Hitesh Sajnani, and Jan Vitek. 2017. DéjàVu: A Map of Code Duplicates on
GitHub. Proceedings of the ACM on Programming Languages (OOPSLA) 1 (2017),
1–28.

[26] André Miranda and João Pimentel. 2018. On the Use of Package Managers by the
C++ Open-Source Community. In Proceedings of the 33rd Annual ACM Symposium
on Applied Computing (SAC). 1483–1491.

[27] Annamalai Narayanan, Lihui Chen, and Chee Keong Chan. 2014. AdDetect: Auto-
mated Detection of Android Ad Libraries using Semantic Analysis. In IEEE Ninth
International Conference on Intelligent Sensors, Sensor Networks and Information
Processing (ISSNIP). 1–6.

[28] Ivan Pashchenko, Duc-Ly Vu, and Fabio Massacci. 2020. A Qualitative Study of
Dependency Management and Its Security Implications. In Proceedings of the 2020
ACM SIGSAC conference on computer and communications security. 1513–1531.

[29] Hitesh Sajnani, Vaibhav Saini, Jeffrey Svajlenko, Chanchal K Roy, and Cristina V
Lopes. 2016. SourcererCC: Scaling Code Clone Detection to Big-Code. In Pro-
ceedings of the IEEE/ACM 38th International Conference on Software Engineering
(ICSE). 1157–1168.

[30] Yulei Sui and Jingling Xue. 2016. SVF: Interprocedural Static Value-Flow Anal-
ysis in LLVM. In Proceedings of the 25th International Conference on Compiler
Construction (CC). 265–266.

[31] Wei Tang, Zhengzi Xu, Chengwei Liu, Jiahui Wu, Shouguo Yang, Yi Li, Ping Luo,
and Yang Liu. 2022. Towards Understanding Third-party Library Dependency in
C/C++ Ecosystem. In Proceedings of the IEEE/ACM 37th International Conference
on Automated Software Engineering (ASE). 1–12.

[32] Wentao Wang, Faryn Dumont, Nan Niu, and Glen Horton. 2020. Detecting
Software Security Vulnerabilities Via Requirements Dependency Analysis. IEEE
Transactions on Software Engineering 48, 5 (2020), 1665–1675.

[33] Ying Wang, Ming Wen, Yepang Liu, Yibo Wang, Zhenming Li, Chao Wang,
Hai Yu, Shing-Chi Cheung, Chang Xu, and Zhiliang Zhu. 2020. Watchman:
Monitoring Dependency Conflicts for Python Library Ecosystem. In Proceedings
of the ACM/IEEE 42nd International Conference on Software Engineering (ICSE).
125–135.

[34] Ying Wang, Ming Wen, Zhenwei Liu, Rongxin Wu, Rui Wang, Bo Yang, Hai Yu,
Zhiliang Zhu, and Shing-Chi Cheung. 2018. Do the Dependency Conflicts in
My Project Matter?. In Proceedings of the 26th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering (ESEC/FSE). 319–330.

[35] SeunghoonWoo, Eunjin Choi, Heejo Lee, and Hakjoo Oh. 2023. V1SCAN: Discov-
ering 1-day Vulnerabilities in Reused C/C++ Open-source Software Components
Using Code Classification Techniques. In Proceedings of the 32nd USENIX Security
Symposium (USENIX Security).

[36] Seunghoon Woo, Hyunji Hong, Eunjin Choi, and Heejo Lee. 2022. MOVERY: A
Precise Approach for Modified Vulnerable Code Clone Discovery from Modified
Open-Source Software Components. In Proceedings of the 31st USENIX Security
Symposium (USENIX Security). 3037–3053.

[37] Seunghoon Woo, Dongwook Lee, Sunghan Park, Heejo Lee, and Sven Dietrich.
2021. V0Finder: Discovering the Correct Origin of Publicly Reported Software
Vulnerabilities. In Proceedings of the 30th USENIX Security Symposium (USENIX
Security). 3041–3058.

[38] Seunghoon Woo, Sunghan Park, Seulbae Kim, Heejo Lee, and Hakjoo Oh. 2021.
CENTRIS: A Precise and Scalable Approach for IdentifyingModified Open-Source
Software Reuse. In Proceedings of the IEEE/ACM 43rd International Conference on
Software Engineering (ICSE). 860–872.

[39] Di Wu, Lin Chen, Yuming Zhou, and Baowen Xu. 2015. How do developers
use C++ libraries? An empirical study. In Proceedings of the 27th International
Conference on Software Engineering and Knowledge Engineering (SEKE). 260–265.

[40] Boming Xia, Tingting Bi, Zhenchang Xing, Qinghua Lu, and Liming Zhu. 2023.
An Empirical Study on Software Bill of Materials: Where We Stand and the Road
Ahead. (2023).

[41] Yang Xiao, Bihuan Chen, Chendong Yu, Zhengzi Xu, Zimu Yuan, Feng Li,
Binghong Liu, Yang Liu, Wei Huo, Wei Zou, and Wenchang Shi. 2020. MVP:
Detecting Vulnerabilities using Patch-Enhanced Vulnerability Signatures. In Pro-
ceedings of the 29th USENIX Security Symposium (USENIX Security). 1165–1182.

[42] Can Yang, Zhengzi Xu, Hongxu Chen, Yang Liu, Xiaorui Gong, and Baoxu Liu.
2022. ModX: Binary Level Partially Imported Third-Party Library Detection
via Program Modularization and Semantic Matching. In Proceedings of the 44th
International Conference on Software Engineering (ICSE). 1393–1405.

[43] Awad Younis, Yashwant KMalaiya, and Indrajit Ray. 2016. Assessing Vulnerability
Exploitability Risk Using Software Properties. Software Quality Journal 24 (2016),
159–202.

[44] Awad A Younis, Yashwant KMalaiya, and Indrajit Ray. 2014. Using Attack Surface
Entry Points and Reachability Analysis to Assess the Risk of Software Vulner-
ability Exploitability. In IEEE 15th International Symposium on High-Assurance
Systems Engineering. IEEE, 1–8.

[45] Zimu Yuan, Muyue Feng, Feng Li, Gu Ban, Yang Xiao, Shiyang Wang, Qian
Tang, He Su, Chendong Yu, Jiahuan Xu, et al. 2019. B2SFinder: Detecting Open-
Source Software Reuse in COTS Software. In Proceedings of the 34th IEEE/ACM
International Conference on Automated Software Engineering (ASE). 1038–1049.

[46] Xian Zhan, Tianming Liu, Lingling Fan, Li Li, Sen Chen, Xiapu Luo, and Yang
Liu. 2021. Research on Third-Party Libraries in Android Apps: A Taxonomy and
Systematic Literature Review. IEEE Transactions on Software Engineering (2021).

[47] Jiexin Zhang, Alastair R Beresford, and Stephan A Kollmann. 2019. LibID: Reliable
Identification of Obfuscated Third-Party Android Libraries. In Proceedings of the
28th ACM SIGSOFT International Symposium on Software Testing and Analysis
(ISSTA). 55–65.

[48] Markus Zimmermann, Cristian-Alexandru Staicu, CamTenny, andMichael Pradel.
2019. Small World with High Risks: A Study of Security Threats in the npm
Ecosystem. In Proceedings of the 28th USENIX Security Symposium (USENIX Secu-
rity). 995–1010.

