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ABSTRACT
In modern software development, open-source software (OSS)

plays a crucial role. Although some methods exist to verify the
safety of OSS, the current automation technologies fall short. To ad-
dress this problem, we propose AutoMetric, an automatic technique
for measuring security metrics for OSS in repository level. Using
AutoMetric which only collects repository addresses of the projects,
it is possible to inspect many projects simultaneously regardless of
its size and scope. AutoMetric contains five metrics: Mean Time to
Update (MU), Mean Time to Commit (MC), Number of Contributors
(NC), Inactive Period (IP), and Branch Protection (BP). These met-
rics can be calculated quickly even if the source code changes. By
comparing metrics in AutoMetric with 2,675 reported vulnerabili-
ties in GitHub Advisory Database (GAD), the result shows that the
more frequent updates and commits and the shorter the inactivity
period, the more vulnerabilities were found.
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CCS CONCEPTS
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1 INTRODUCTION
In recent years, there has been a significant rise in the number of

supply chain attacks, with malicious software supply chain attacks
showing an average annual growth rate of 742% [1] since 2019.
A supply chain attack is a type of cyber attack that exploits the
structure of the software supply chain, effectively attacking the
software’s dependency structure. These attacks can cause signifi-
cant damage by spreading through the entire supply chain, and are
difficult to detect due to being behind the normal chain of trust.

Nowadays, a great deal of open-source software (OSS) are nec-
essarily used as component to develop programs. According to a
report by the Linux Foundation, it has been estimated that OSS con-
stitutes 70-90% of any given piece of modern software solutions [2].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
AST’23, May 15-16, 2023, Melbourne, Australia
© 2023 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

The complexity of the software dependency structure makes it eas-
ier to spread vulnerabilities to other packages and attack software
supply chain. In such a development environment that utilizes OSS
as components, selecting packages and managing vulnerabilities
in components are time-consuming and costly. For example, if a
vulnerability occurs in one of the components of the software, the
vulnerability can be patched by updating the component to the
latest version. To do this, it is necessary to find and patch a vulner-
ability in the components. However, the number of components
has increased that it has become difficult to manage all components
manually.

In this situation, we need efficient software security measure-
ment. The criteria that represents how secure and safe the software
is called a software security metric (SSM). Every security-related
measurements can be SSM, and each SSMs has different properties
such as a difficulty of measurement and impact.

The software supply chain encompasses four key phases: open-
source communities, repositories, package managers, and end users.
As a result of the collaborative nature of OSS, all users are simulta-
neously involved in both production and consumption. End users
may also contribute to the development process by participating
in another open-source community. It would be better to measure
all phases to get more accurate result. However, measuring metrics
takes time and we have to choose which level is the most efficient.
Our objective is to develop a method for measuring multiple soft-
ware supply chain metrics at once, which is fast and easy to use.

It is important that codes in open-source community could be
gateways where cyber attacks occur. Nevertheless, because addi-
tional vulnerability analysis technology is required, it is unsuitable
to be our SSM. It takes a long time to analyze the entire source
code, and if the code changes, it needs to be operated every time
it alters. In case of packages, these are language dependent and
users are scattered according to the language. In addition, because
AutoMetric aims at language-independent analysis, source code
analysis which is language-dependent could not be included.

Meanwhile, SSMs in the form of repository are able to measure
automatically since repositories provide API. We can check the
history of changes in the source code and how the developers
manage the project from repositories. In addition, currently, the
number of GitHub users is more than 94 million, [3] and the number
of GitLab users is over 30 million. [4] Therefore, we decided to focus
on repositories.

Limitation of existing techniques. There are three prominent
existing technologies that can be used for software security metrics:
1) Software development best practice(SDBP) and 2) Scorecard.

1) Software development best practice (SDBP): SDBP refers
to developing software in a proven manner, with various principles
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presented in text format, depending on the companies and institu-
tions. Both security-related companies and government agencies
have conducted studies on SDBP. For instance, the National Institute
of Standards and Technology (NIST) in the United States has pre-
sented software guidelines such as the Cyber security Framework
[5] and SSDF [6] to be followed during the software development
process. SDBP outlines the principles that need to be followed for
developing safe software, and it can contribute to our research in
this respect. However, the disadvantage is that it is challenging to
comprehend the guidelines quickly since most of them are writ-
ten in natural language. Efficient metrics should be represented
numerically.

2) Scorecard: Scorecard [7] is an automatic mechanism devel-
oped by the Open Source Security Foundation, consisting of 18
software security metrics (SSM) and is composed of 10 points. It
distinguishes whether OSS dependencies are safe or not. However,
there are limitations in measurement. For instance, ‘Contributors,’
one of the SSMs, is based on the number of organizations involved.
The number of organizations is determined by the organization
name and email, but it is challenging to differentiate them if they
are spelled differently or if personal emails are used instead of
organizational emails.

Our approach. In this paper, we present AutoMetric, a technology
that automatically performs measurements on selected metrics of
the repository phase. The AutoMetric contains five SSMs: Mean
Time to Update (MU), Mean Time to Commit (MC), Number of
Contributors (NC), Inactive Period (IP) and Branch Protection (BP).

Our objective is to determine whether security can be measured
effectively through the five selected SSMs. To achieve this, we uti-
lized the GitHub Advisory Database [8] (GAD), which provides
access to vulnerability information from the National Vulnerability
Database [9] in real time as well as vulnerabilities in ecosystems
such as pip, npm, and Maven. GAD also provides repository ad-
dresses for the listed projects. Thus, by applying AutoMetric to
the vulnerabilities stored in GAD, we expect to obtain similar re-
sults to those obtained by applying it to overall vulnerabilities. We
compared the number of vulnerabilities and the values measured
for each metric using GAD and AutoMetric. The GAD contained
2,675 repositories selected based on the CVEs that were reviewed
by GitHub and uploaded to the GAD repository in json file.

Evaluation. All five selected metrics of AutoMetric were auto-
mated using the repository’s API. SSM automatically generates a
json file of selected repository within seconds. We compared each
result to the number of CVE in GAD. We also do the case study
which is an interesting case found in the automatic measure process
using AutoMetric and it was written in Section 4.3. For example,
we analyze why the maximum and minimum values in each metric
are measured in the repository.

Contribution. This paper makes the following contributions:
We have demonstrated the feasibility of automatically measuring

security metrics for large-scale software using AutoMetric. With
only the Git repository address, AutoMetric can measure five SSMs
and perform automatic measurement on multiple repositories si-
multaneously.

AutoMetric can contribute to the standardization of SSMs by
providing a consistent and comparable approach for measuring
security. Currently, SSMs are difficult to compare and often lack
consistency. Developing and applying standardized software secu-
rity metrics can provide consistent and comparable security results.

We compared AutoMetric with the already known vulnerabil-
ities identified in GAD. This allowed us to cover the source code
level where vulnerabilities were found and we found a significant
correlation. MU, MC, and IP showed a clear increase in the number
of vulnerabilities as the metrics increased. Especially, the three
timing-related metrics showed a strong correlation with the known
vulnerabilities in GAD.While some projects may not have sufficient
information to compute MU, we found that these complementary
metrics, such as MC and IP, can still be useful in measuring the
security of OSS.

2 BACKGROUND
In this section, the structure of the software supply chain is intro-

duced, and software security measurement metrics are described.

2.1 Structure of the Software Supply Chain

Figure 1: Structure of the Software Supply Chain

Open-source communities. The software supply chain of the
OSS consists of four phases: open-source community, repositories,
package managers, and end users. [10] Software developers are in
the process of creating source code for software. The developer
uploads the source code of the project to the repository.

Repositories. Repositories are a form of data structure where
source codes are stored such as GitHub and GitLab. The repository
is driven based on a version control system (VCS) such as Git, and
all software changes are recorded. Repositories have fork functions
that allow you to replicate existing projects to develop modified
software, branch functions that allow you to develop software in
multiple branches, and contribute to specific projects.

Package managers. Package Manager is a service that allows end
users to download software distributed in the form of packages.
Javascript’s package manager npm, Python’s package manager
PyPI, Java’s package manager Maven, Ruby’s package manager
RubyGems are examples of package managers. Apple’s AppStore
and Google’s PlayStore can also be seen as package managers.

End users. The end user is the last phase in the software supply
chain and refers to a user using the developed software. However,
If the end user downloads the package from the package manager



and develops it, the end user may be both the developer and the
end user. The software supply chain is composed of such multiple
chains.

The more software libraries are used, the more complex the
structure of the software supply chain becomes. This can cause the
increase of software supply chain attacks. To prevent this, software
libraries should be reduced to a minimum, and we should choose a
secure library.

2.2 Motivation.
Among the numerous metrics, it is necessary to derive an opti-

mized set that can perform efficient security verification. To this
end, it is necessary to collect SSM and create an initial set by con-
sidering the difficulty of measuring metrics and the possibility of
automatic measurement. After deriving the initial set of metrics,
an automatic measurement technology is developed and applied to
a project.

Challenge 1:Measure SSMs automatically. There are numerous
SDBPs, and many of them involve metrics that cannot be quan-
titatively measured. For instance, it is difficult to quantify best
practices such as "Train all users of software, based on their roles
and responses." [11] Given the multitude of development best prac-
tices, it can be considered a primary challenge to gather measurable
metrics.

As many SSMs cannot be automatically measured, the process of
developing automatic measurement technology after evaluating the
possibility of automation is one of the significant challenges. For
instance, Mean Time to Update (MU), which indicates the average
time taken for a software to update when a new version of its
component is released, is a crucial metric to measure. However,
measuring MU requires two essential pieces of information, i.e.,
the release date of each version of the software component and
the release date of the new version of the software component.
Unfortunately, these pieces of information are stored in various
ways by different projects, and accurate information collection may
not be feasible. In cases where systematically managed SBOM is
available, automatic measurement is possible; otherwise, the metric
can only be measured manually.

Challenge 2: Verify the effectiveness of the security metrics.
Even if SSMs are created from SDBP, the effectiveness of the metrics
is not clear. The measurement of the metrics is meaningless if the
metrics are not related to security. Therefore, verify the effective-
ness of the security metrics through evaluation is one of the main
challenges.

2.3 A Motivating Example
Table 1: the Number of packages in popular Linux distributions counted
in 2022

Linux Distribution Number of pre-compiled packages
Debian 153,621
Fedora 66,075
Ubuntu 100,530

In the case of open-source operating system (OS) such as Linux,
manyOSS are included as a software package. Checking the security

of an open OS is to check the security of a package included in
the open-source OS. Table 1 shows the approximate number of
pre-compiled packages in each Linux distributions. Ubuntu, one
of the most famous distributions of Linux, contains more than
100k packages in the Ubuntu package manager. [12] With a lot
of packages, it is impossible to manually check the security of
packages before the next version is released.

3 METHODOLOGY/DESIGN
3.1 Overview

Figure 2: Overview of the AutoMetric
AutoMetric automatically measures measurable security metrics

through the GitHub API and GitLab API. AutoMetric is divided into
three phases: 1) Address analysis, 2) Metric measurement, and 3)
Result output. We chose Python, an interpreted language that can
be easily used in multiple operating systems, as the development
language to support multiple operating systems. In order tomeasure
metrics of repository phase, values required for measurement must
be returned using the repository API. Figure 2 shows the overview
of the AutoMetric.

3.2 Address Analysis
AutoMetric can performmetric measurements on projects stored

in GitHub and GitLab-based repositories. In the case of GitHub, the
address is organized in the form of [github.com/GROUP/PROJECT.
git.] We can parse the address by ‘/’ to extract the project name and
group name, and then use the GitHub API. In the case of GitLab,
unlike GitHub, it supports the subgroup function. Therefore, the ad-
dress is organized in the form of [gitlab.com/GROUP/SUBGROUP/
PROJECT.git]. We can parse the address based on‘ /’ to extract the
project name, group, and subgroup names, through which you can
use the GitLab API. In the case of GitLab, it is possible to create
a GitLab-based third-party repository separate from the existing
GitLab server. For example, Debian Salsa, which stores packages
for the Debian operating system, is a third-party repository based
on GitLab. The domain of Salsa is [salsa.debian.org]. The domain is
different from the original GitLab, but we can still use the GitLab
API.

3.3 Measuring Metrics
For measuring the metrics of the repository phase, we need the

information of the repository of the project. In this paper, automatic



Table 2: Details of each automatic measurement

Metric Computational method Description
M1 MU (last_release - first_release) / count the average update time of a repository release.
M2 MC (last_commit - first_commit) / count the average update time of a repository commit.
M3 IP now - last_commit the inactive period, from last commit date up until now
M4 NC total (contributors) the number of contributors participating in the repository.
M5 BP IsProtected whether branch protection are applied or not.

measurements are made for GitHub and GitLab, so GitHub API and
GitLab API are utilized. To use the APIs, we used python library
for each APIs. We used PyGithub [13] for GitHub API, and the
python-gitlab [14] for GitLab API.

In Git-based repositories, we can find branches. Branch is the
concept for collaborating with others and managing multiple di-
rection of the development. Among multiple branches, only one
branch is called the main branch. We are going to measure the
metrics within the main branch.

Our goal is to create metrics that are more efficient than the
existing ones. The explanation for the five SSMs are as follows.

MU: mean time to update. Mean time to update (MU) is a metric
that measures the average time of a repository release update. There
is an API that returns all the releases of the repository at the releases
API of GitHub and GitLab. In the returned release information, the
date of the release is contained through the value ‘created_at’, and
the version name is returned through the value ‘tag_name’. If the
period between the first release and the last release is calculated and
averaged by the total number of releases, the MU can be measured.

MC:mean time to commit. Mean time to commit (MC) is ametric
of how often commits have been made in the repository. Commit
is the smallest unit of code update in the repository. Therefore,
the frequent commits indicates that the repository is very actively
updated.

The GitHub Commits API allows you to retrieve the list of com-
mits in the repository, and provides the results in multiple pages.
Commits API has parameters ‘perPage’ and ‘page’, which specify
how many commits are displayed on each page. The ‘page’ is a
parameter that specifies how many pages are displayed. If the ‘per-
Page’ value is set to 1, only one commit per page is fetched, so
the total number of pages is equal to the total number of commits.
The GitLab Commits API can retrieve the list of commits in the
repository. At this time, the parameter ‘all’ must be specified as yes
to receive all commits. If you count the number of returned commit
lists, you can find the total number of commits. The MC can be
obtained by dividing the total number of commits by the time it
has passed from the first commit.

IP: inactive period. Inactive period (IP) is a metric measures the
past time from the last commit. The higher the value, the longer
the repository is not updated. In the case of a project that has been
completed and does not require further development, security of the
repository may not be degraded even if the IP is high, so we have
to consider carefully if it is required or not. GitHub and GitLab’s
Branches API allows us to return information about a particular
branch, and you can check the return value for the date of the last

commit made by that branch. Calculating the time elapsed from
that date can measure the IP.

NC: the number of contributors. The number of contributors
(NC) is a metric of the number of contributors participating in the
repository. GitHub and GitLab’s repositories API provides APIs
that return a list of contributor. Number of contributors can be
measured by counting the number of tuples in the contributor list.

BP: branch protection. Branch protection (BP) is a metric of
whether branch protection settings provided by GitHub or GitLab
are applied. There are various branch protection rules, and the
collaborator controls behavior, such as deleting branches or push
the changes by force.We can check the ‘protected’ value of a specific
branch through the Branch API of GitHub and GitLab. The value
‘protected’ is in Boolean format, and if it is true, the protection
setting is applied. However, if it is False, the protection setting is
not applied.

3.4 Result Output
The result of measuring the metrics is output as a file in JSON

format. The project name and measured score for each metric are
recorded together. We used Python’s json library to read and write
json documents through Python.

4 EVALUATION
This section evaluates AutoMetric. Subsection 4.1 introduces

experimental setup, including the experimental environment and
target dataset. Subsection 4.2 shows the result of the AutoMetric,
and investigates the correlation between the security and the se-
curity metrics. Subsection 4.3 is the case study of interesting cases
found during evaluation.

4.1 Experimental Setup.

Experiment environment. AutoMetric was developed based on
Python 3.10.8. The Python packages used is as follows: PyGithub
1.56, python-gitlab 3.10.0, requests 2.28.1. We used i5-12400 CPU,
32GB Ram, and native Windows 11 desktop to run AutoMetric.

Target dataset. We used the GitHub Advisory Database (GAD) [8]
as a target dataset. The GAD is vulnerability database inclusive of
CVEs and GitHub originated security advisories from the world of
open source software. The GAD contains over 10k GitHub reviewed
advisories, and over 170k unreviewed advisories. Our target is only
the reviewed advisories.



Each Advisory in the GAD is security vulnerability. It includes
the description, severity, affected package and references. We down-
loaded the full database and parsed it to figure out the number of
vulnerabilities in each repository of the package. As a result, 2,675
packages were collected.

Define the security of the software. It is imperative to establish a
clear definition for software security. Vulnerable software is defined
as software that contains vulnerabilities, and therefore, the more
vulnerabilities that exist within the software, the less secure it
is considered to be. In essence, we can measure the security of
software by quantifying the number of vulnerabilities present.

4.2 Results
The results of performing automatic measurements on 2,675

repositories are as follows. All values were rounded to the third
decimal place. Total means the number of software in which the
metric is detected. Maximum refers to the maximum value among
the detected values of the metric, and the minimum refers to the
minimum value among the detected values of the corresponding
metric. Mean refers the average of all detected values. Exceptionally,
maximum and minimum of the branch protection means number
of true and false respectively.

Details of the number of vulnerabilities. In the case of the
number of vulnerabilities, a total of 2,675 packages were detected.
The most number of vulnerabilities is 410, which were found in
tensorflow/tensorflow. [15] However, the second most vulnerable
project after tensorflow is microweber/microweber, [16] with 62
CVEs. The third is 54 and the fourth is 47 and the fifth is 45, so
the difference is not severe from the second. Since the number of
vulnerabilities in the tensorflow and the difference between other
projects has not a big difference, the tensorflowwas removed during
analysis.

The least number of vulnerabilities is 1, and it was found in a total
of 1,861 repositories. Given that 2,619 repositories had fewer than
10 vulnerabilities, most of GAD’s repositories had relatively fewer
vulnerabilities. Among the repositories in which vulnerabilities
were detected, an average of 2.19 vulnerabilities were detected.

Details of the MU. In the case of MU, it was detected in 1,765
packages. Since the MU measurement is based on the release of
GitHub and GitLab, it means there is no release in 910 undetected
packages. The maximum value of the MU was 3,481.0, which was
detected in the Snorby/snorby. [17] This means that updates to
the repository are being made once every 3,481 days. The mini-
mum value of the MU was 0, which was detected in the rack/rack
repository. This means that the repository is updated every days.
In order to derive meaningful insights, it is necessary to focus on
projects that have been actively developed, rather than those that
have not been updated for more than 5 years since their last update.
Therefore, we excluded the top 10% of MU values from our analysis,
as they are likely to be associated with less active projects.

Correlation between CVEs in GAD andMU. Figure 3 shows the
correlation between number of vulnerabilities and MU. Looking at
the graph, repositories with high MU values have fewer vulnerabili-
ties, and repositories with low MU values have high vulnerabilities.

Figure 3: MU-CVE scatter plot analysis

Through this, it can be inferred that the lower the MU, the higher
the number of vulnerabilities. In general, this is completely con-
trary to the general perception that the more frequently updates
are performed, the more secure the software is. Rather, it is possible
to interpret that performing updates too often reduces the security
of the software, and further analysis is needed.

Details of the MC. In the case of MC, it was detected in 2,674
packages among the total 2,675 repositories. The repository whose
MC value is ‘n/a’ is hiuminhnv/Zenario-CMS-last-version. When
we checked it out, the repository itself was empty. The project was
considered to have disappeared and was excluded from the analysis.
The maximum value of the MC was 3,058, which was detected in
nrako/psnode. [18] The repository means that commits are made
once every 3,058 days. The values whose MC values are too large,
unlike other values, are as follows. The result of MC was 2,259
days for andrewimm/xopen, [19] 1,290 days for jenkinski/delete-
log-plugin, 1,275 days for xjamundx/gitblame, [20] 1,253 days for
krl/bunch, and 1,319 days for andrewjstone/dynamo-schema. [21]
The largest value used for statistics is jenkinski/random-string-
parameter-plugin. This shows an 942 MC days. The above six repos-
itories were removed because they showed a too large difference of
more than 300 days compared to other values. So the total number
of repositories used for MC statistics is 2,668.

Strong correlation between CVEs in GAD and MC. Figure 4
shows the correlation between number of vulnerabilities and MC.
The MC shows almost the same graph as the MU. Like the MU,
repositories with high MC values have fewer vulnerabilities, and
repositories with low MC values have high vulnerabilities. It is



Table 3: Statistics of automatic measurement

Result M1: MU (days) M2: MC (days) M3: IP (days) M4: NC (persons) M5: BP (cases)
Maximum 3481 3058 5070 473 —
Minimum 1 0 0 1 —
True — — — — 1187
False — — — — 1487
Mean 175.08 27.37 311.53 83.49 —
Total cases 1765 2674 2675 2675 2674

Figure 4: MC-CVE scatter plot analysis

possible to interpret that performing updates too often reduces the
security of the software, and further analysis is needed.

Details of IP. IP was successfully detected in all packages. The
oldest package from the last commit, spejman/festivaltts4r, [22]
was detected 5,070 days. The second longest repository is dynamo-
schema project under andrewjstone, which has 3,958 IP days. Since
the second one, there has been no significant difference, so only
spejman/festivaltts4r with a large difference of more than 1,000 days
was excluded from the analysis graph. The least recent package
from the last commit has a detected value of 0, which means that
less than a day has passed since the last commit. The average IP
was 311.53 days.

Correlation between CVEs in GAD and IP. A strong correla-
tion was found by comparing the number of vulnerabilities and
IP. Repositories with high IP have fewer vulnerabilities, and repos-
itories with low IP have high vulnerabilities. In general, this is
completely contrary to the general perception that the more active
the repository is managed, the more secure the software is. Rather,
if the IP is too long, it may be interpreted that fewer vulnerabilities
are found because it becomes a project that people do not use.

Figure 5: Time metrics-CVE scatter plot analysis

Correlation between CVEs in GAD and Time metrics (MU,
MC and IP). The relationship between time metrics and GAD
is more pronounced in the table. By normalizing, it changes the
difference in the numerical value range of the dataset to a common
scale without distorting it. It has a preprocessing process to remove
values with ‘n/a’ in MU and MC, and those with too large values
unlike other repositories.

The method of normalizing each metric is as follows:

0 ≤ 𝑚1 (𝑝 𝑗 ) =
𝑀𝑈 (𝑝 𝑗 )

max
𝑖=1· · ·𝑛

𝑀𝑈 (𝑝𝑖 )
≤ 1

0 ≤ 𝑚2 (𝑝 𝑗 ) =
𝑀𝐶 (𝑝 𝑗 )

max
𝑖=1· · ·𝑛

𝑀𝐶 (𝑝𝑖 )
≤ 1

0 ≤ 𝑚3 (𝑝 𝑗 ) =
𝐼𝑃 (𝑝 𝑗 )

max
𝑖=1· · ·𝑛

𝐼𝑃 (𝑝𝑖 )
≤ 1



We try to find out the correlation between 𝜙 , which added all
the normalized time metric values and vulnerabilities.

Φ = 𝑠𝑢𝑚(𝑚1,𝑚2,𝑚3)

By adding all the normalized values, it was possible to confirm a
common relationship in time metrics. The more frequent updates
and commits and the shorter IP is, the more vulnerabilities were
found. However, CVEs in GAD was the unclear association with
NC and no association with BP.

Details of NC. NC have been detected in every repositories. Repos-
itory with the largest NC, esphome/esphome, [23] had 473 people.
There were 8 repositories that had only one contributor. There were
average of 83.49 contributors in the test set.

Figure 6: NC-CVE scatter plot analysis

Weak correlation between CVEs in GAD and NC. Figure 6
shows the correlation between the number of vulnerabilities and
NC. The graph shows that the higher NC, the lower the overall
number of vulnerabilities in the repository. This means that the
more contributors, the better the security of the repository, but
the relationship does not appear clear. According to Linus’ law, it
was assumed that many people would be safer to participate in the
development, but the figure showed that it did not always work.

Details of BP. In the case of branch protection, 2,674 packages
were detected. The repository whose BP value is ‘n/a’ is hiuminhnv/
Zenario-CMS-last-version. The project was deemed to have deleted
and was therefore excluded from the analysis. Out of the total
number of packages, 1,187 had branch protection, while 1,487 had
no branch protection.

Weak Correlation between CVEs in GAD and BP. Since the
branch protection is true or false metric, we only need to compare

the measurements for each result. The average number of vulnera-
bilities in the repository where BP is true was 2.81, and the average
number of vulnerabilities in the repository where BP is false was
1.70. Since BP is an option to protect branches from attackers, it can
be interpreted that it is not related to the number of vulnerabilities
from developers’ mistakes.

4.3 Case Study

Highest MU. The repository with the highest MU measured was
the Snorby/snorby, [17] which recorded 3481.0. The repository is
a ruby on rails web application for network security monitoring.
Snorby was released just once in 2013, so MU was measured high.
There was just one vulnerability in snorby.

Lowest MU. The repository with the lowest MU measured was
rack/rack [24] with 0. Rack provides a minimal, modular, and adapt-
able interface for developing web applications in Ruby. MU was
calculated as 0 since the first release occurred a few hours before
the metric measurement.

Highest MC. The repository with the highest MC measured is
nrako/psnode, [18] which recorded 3058. Psnode is a Node.js KISS
module to list and kill process on OSX andWindows. The repository
had only one commit on July 22, 2014. This is a case in which the
MC value was measured high because there was no commit since
then.

Lowest MC. The lowest measured repository for MC is liferay/
liferay-portal. [25] Liferay-portal is produced by the worldwide
Liferay engineering team, and involves many hours of development,
testing, writing documentation, and working with the wider Liferay
community of customers, partners, and open-source developers.
Linux has had more than 669k commits since its first commit was
made on April 16, 2006. The MC of linux is 0.01, which means that
about 100 commits were made a day.

Highest IP. The repositorywith the highest IP is spejman/festivaltts4r.
[22] FestivalTTS4r is an interface to Festival TTS Speech Synthesis
System. There were 26 commits in this repository, and the last
commitment was made on January 17, 2009.

HighestNC. The repositorywith the highest NC is esphome/esphome.
[23] ESPHome is a system to control your ESP8266/ESP32 by simple
yet powerful configuration files and control them remotely through
Home Automation systems. There are 473 contributors in esphome.

4.4 Summary
In conclusion, this study proposes AutoMetric as an automated

method for measuring the safety of OSS, and identifies a correlation
among the five metrics, particularly in time metrics. The study
recommends the use of MC, which measures the minimum unit
of code changes, as an effective metric for measuring software
security.

AutoMetric is specifically designed to measure the overall se-
curity of software groups with multiple sub-components, such as
operating systems. Therefore, it is expected that significant differ-
ences will exist when comparing the highest and lowest values



covered by the case study. It is not the purpose of this study to com-
pare values at the extremes one-to-one from a micro-perspective.
However, there is a need to develop a mechanism for handling
outliers covered in the case study.

5 DISCUSSION

Adding other metrics. AutoMetric currently consists of five met-
rics, and there is a possibility that other metrics will be added. In
order to add other SSMs, the possibility of automation should be
evaluated first. If it is determined that the possibility of automa-
tion exists, automatic measurement technology may be developed
by matching the corresponding metric with the element of the
repository.

Limitations of information available from repositories. Each
project has unique purposes for utilizing their repository, depend-
ing on the policies of the repository manager. For example, some
projects immediately commit code changes to the repository upon
modification, while others collect changes and commit them at
specific intervals. These differences can result in varying AutoMet-
ric results. Additionally, the package manager can collect more
accurate information about versions. GitHub stores information
based on commits, not releases, making it difficult to get an accurate
version history. Further research is necessary to address this issue.

Too many contributors. If the repository has too many contrib-
utors, the GitHub API cannot return the list of contributors, and
it is impossible to measure the total number. For example, Linux
repository is a repository for developing Linux kernels with more
than 10,000 contributors. If you send a request to the repository via
the Contributors API, an error occurs.

None-code repositories. While most repositories are used for
project development, there are also repositories used for education
and information dissemination. The-Art-Of-Programming-By-July,
for example, is a repository that provides an e-book for algorithm
learning and is ranked at the top of C Star Ranking with 20.6k stars.
When measuring the metric for the repository, IP was found to
be 508 days since the last commit. For a typical repository, this
would suggest a wrong state. However, since the repository is not
directly related to security, the meaning of the measured value is
not significant. If these repositories are included in the statistics,
the statistics can be misleading.

6 RELATEDWORK

Software supply chain security. Ruian Duan et al.[10] modeled
the package management workflow and found root causes of sup-
ply chain attacks. In addition, they proposed the vetting pipeline
MALOSS to measure supply chain attacks on package managers
for interpreted languages. It is similar in that it is a study to reduce
supply chain attacks.

Other security metrics. Nikolaos et al.[26] found the average
vulnerability life and minimum value of software such as Linux
and Firefox through a large-scale empirical study on the life of

vulnerabilities within FOSS. This is similar to evaluating software
through a metric of vulnerability life.

Possibility of utilizing SBOM. Software Bill of Materials (SBOM)
is a method for accurately recording components contained in soft-
ware. SPDX [27], the most widely used SBOM format, provides a
tool for automatically generating SBOM through metadata, and
a technology for extracting SBOM from source code is being de-
veloped. If an SBOM for the target software can be extracted, the
Git addresses of the sub-components that make up the software
can be identified through the SBOM, enabling the software to be
inspected all at once regardless of its size. As SBOM become more
standardized, the usefulness of AutoMetric is expected to increase.

Detecting vulnerable code clones. There exist several code
clone methods that may not be considered direct measurement
approaches, but they can be useful in enhancing software security.
Vuddy [28] is an effective and scalable technique for identifying
vulnerable code clones that can accurately detect security weak-
nesses in large software systems. CENTRIS [29] is another method
that can efficiently improve the detection of nested elements. By
utilizing V0Finder [30], time metrics can be easily identified. These
approaches have the potential to contribute to improving software
security, and their effectiveness should be further evaluated and
validated through empirical studies.

7 CONCLUSION AND FUTUREWORK
In the current trend of software development, where multiple

OSS components are required, selecting the appropriate software
components is a critical concern. To address this, we propose Auto-
Metric, a program that enables automatic measurement of security
metrics. By providing repository addresses as input solely, AutoMet-
ric can automatically measure multiple security metrics. Moreover,
we analyzed the security metrics in AutoMetric by comparing them
with the number of vulnerabilities. AutoMetric can aid developers
in selecting more secure software components.

Future work. There is potential for further development and ex-
pansion of AutoMetric in various ways. Firstly, although strong cor-
relations were found among time metrics, other SSMs did not show
significant correlations, indicating a need to explore and identify
better metrics. Additionally, AutoMetric currently requires human
pre-processing, and automation of this process would increase ease
of use.
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