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Abstract. We propose an extensible exploit framework for automation
of penetration testing (or pen-testing) without loss of safety and describe
possible methods for sanitizing unreliable code in each part of the frame-
work. The proposed framework plays a key role in implementing HackSim
a pen-testing tool that remotely exploits known buffer-overflow vulnera-
bilities. Implementing our enhanced version of HackSim for Solaris and
Windows systems, we show the advantages of our sanitized pen-testing
tool in terms of safety compared with existing pen-testing tools and ex-
ploit frameworks. This work is stepping toward a systematic approach
for substituting difficult parts of the labor-intensive pen-testing process.

1 Introduction

Vulnerability scanning is deployed to check known vulnerabilities on a single
system or a series of systems in a network. There are a number of scanning tools
which are available publicly or commercially [1]. Penetration testing (or pen-
testing) is a goal-oriented method similar to “catch-the-flag” that attempts to
gain privileged access to a system using pre-conditional means that a potential
attacker could manipulate. A tester, sometimes known as an ethical hacker, gen-
erally uses the same methods and tools used by attackers to undermine network
security. Afterward, penetration testers report on the exploitable vulnerabilities
they found and suggest strengthening steps needed to make their client’s sys-
tems more secure [2,10,11]. Most security consulting firms provide pen-testing
services by red teams or ethical hackers [3,4], and the market volume for these
services is expected to grow substantially [5,19].

Vulnerability scanners provide automated scanning with user-friendly inter-
faces and extensible structures for updating new vulnerabilities. In addition,
scanning is conducted using safe methods that do not produce unexpected im-
pact on target systems, at the expense of false-positive results. Pen-testing is
performed manually using the same methods a real attacker employs. Such a
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time consuming task as pen-testing provides visible and useful results from a
deep investigation of a target system. However, pen-tesing may leave behind
security holes or cause unintended damage to the system [6]. Thus, this safety
problem is an obstacle in automating pen-testing procedures. Because recent
pen-testing tools or exploit frameworks for pen-testing do not provide a saniti-
zation method to deal with unreliable exploit code, safety of their pen-testing
cannot be guaranteed [10,11,12,13].

Therefore, in this paper, we propose an extensible exploit framework as a
foundation for automating pen-testing with safeguards and describe consider-
ations for sanitizing unreliable code in each part of the framework. Also, we
implement HackSim, an automated pen-testing tool, as the prototype system
of the proposed framework. Current implementations of HackSim are able to
exploit four well-known vulnerabilities in Solaris and three in Windows. Never-
theless, it is easy to add new vulnerability tests to HackSim. Also, we show two
examples of sanitized exploit code that do not negate the benefits of pen-testing.

The remainder of the paper is organized as follows: We describe related works
and the differences underlying our work in Section 2. Overall system architecture,
the extensible exploit framework for pen-testing and the design consideration for
sanitizing each part of exploit framework is presented in Section 3. We exam-
ine implementation issues and implementation results in Section 4. Finally, we
summarize this paper and give concluding remarks in Section 5.

2 Related Works

Testing methodologies can be classified into two categories: blackbox testing and
whitebox testing. Blackbox testing is used when the tester has no prior knowledge
of a system. On the other hand, whitebox testing is used when the tester knows
everything about the system – like a glass house in which everything is visible.

Blackbox testing is a very useful method for finding unpublished vulnerabil-
ities and it can be performed quickly using automated tools such as SPIKE [9].
Using it, we can collect information that is necessary for testing vulnerabilities
and we also can obtain exploit codes for the vulnerabilities that we want to
check. However, such a tool terminates the system or service because it carries
out random attacks in order to know whether the testing has succeeded or not.
Thus, blackbox testing is inappropriate for finding potential vulnerabilities when
the purpose of pen-testing is not to terminate system or service but to safely
find vulnerabilities.

Several commercial pen-testing tools and open-sourced exploit frameworks
using whitebox testing have been proposed. Canvas and Core Impact are com-
mercial pen-testing tools that include a network scanner and exploit frame-
work [10,11]. Also, open source projects such as Metasploit and LibExploit
provide exploit frameworks for pen-testing [13,12]. These frameworks include
libraries of common routines and tools to generate shellcode 4.
4 In case of exploit codes for remote targets, shellcode is defined as a set of instructions

injected into an exploited program and then executed on remote targets.
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Fig. 1. HackSim Architecture Overview

Existing pen-testing tools and exploit frameworks have pros and cons. Those
released as open source have not been fully verified in terms of safety. They
produce lots of unreliable exploit code which causes pen-testing to fail and may
lead to operating system and application crashes. Therefore, the safety of exploit
code is highly required, but existing tools and frameworks are not concerned
about the safety of exploit codes. They do not try to verify the safety of their
pen-testing procedures.

In order to achieve appealing results for administrators and reliable pen-
testing, we designed and implemented an automated pen-testing tool supporting
the usability and safety of vulnerability scanners as well as the correctness of
manual pen-testing.

3 HackSim Design

3.1 Architecture Overview

A top-down approach is used for describing our proposed system. First, we
present the overall system architecture for automated pen-testing, which consists
of two parts: “scanner program” and “exploit program”. The scanner program is
for processing user inputs and preparing corresponding parameters being passed
to the exploit program. The exploit program is for launching the exploit codes
in an extensible and safe way, which is described in the following subsections.

Components in the overall architecture are shown in Fig. 1. The lower part
is for the exploit program, and the upper part is for the scanner program. When
the scanner program generates penetration commands after getting user inputs
such as the target range and other option values, the scanner program invokes
the exploit program with commands generated by the scanner program.
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Fig. 2. Structure of the extensible exploit framework

The scanner program includes concise scanning functionalities, as shown in
the dotted box in Fig. 1. The simple scanner performs OS fingerprinting and port
scanning for checking the availability of targets and investigating information
about them before penetration.

3.2 Extensible Framework for Exploit Codes

The exploit program of our pen-testing tool is designed as an extensible exploit
framework for representing various exploit codes. Exploit codes are organized
quite differently by the class of vulnerability. Among many classes of vulnera-
bilities, we confine our efforts to the remote buffer overflow vulnerability. The
reason for this is that buffer overflows accounted for more than 50 percent of
CERT advisories from 1996 to 2001 and 40 percent of the 20 most critical inter-
net security vulnerabilities identified by the SANS Institute and the FBI [14,15].

From the analysis of public exploit codes for remote buffer overflow vulnera-
bilities, we can build an exploit framework that consists of five functions and two
input data as illustrated in Fig. 2. This framework plays a key role as an engine
for pen-testing and provides extensibility as a common platform for adding new
exploit codes.

The option handling part is in charge of handling options for individual ex-
ploit codes in the framework. Different options in each exploit code are integrated
into common interfaces in the option handling part.

The shellcode part is a set of instructions to be injected into an exploited
program and executed on a target when the exploit works. It consists of the
preprocessing shellcode, the body shellcode and the termination shellcode. The
preprocessing shellcode is the preparation code to be executed before executing
the body shellcode. For example, if the body shellcode contains a null character,
the preprocessing shellcode should use a technique to avoid it. In Windows, if the
body shellcode makes use of dynamic libraries, it also supports techniques such as
PEB, SEH or TOPSTACK to retrieve function APIs(Application Programming
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Interface) safely [17]. The body shellcode is a main set of instructions to be
explicitly chosen by a pen-tester so that it should be executed on a target in
case of successful exploitations. The termination shellcode returns the exploited
hosts to their normal state. Note that this shellcode part can be reused for
different exploit codes on the same OS and CPU architecture.

The buffer fabrication part adjusts the size of an input buffer, and writes an
address on the buffer for returning to the prepared shellcode position. Therefore,
every target service needs to be exploited using different buffer fabrication codes.
The connection part is for establishing a connection to a remote service using
either a socket connection or remote procedure call(RPC). The transmission part
sends the fabricated buffer to the vulnerable position in the target service. To
put the fabricated buffer onto the right position, the transmission part should
talk to the target service with its own protocol until the overflow is caused.

The verification part returns the result after executing the shellcode. The re-
sult informs whether the penetration succeeds or not. If the penetration succeeds,
the framework reports that the corresponding service is ‘penetrable’. Otherwise,
the penetration starts over from the buffer fabrication, as indicated by the outer
arrow in Fig. 2. In each trial, the return address stored on the run-time stack is
written again incrementally in order to fit the exploitable position. If the num-
ber of trials is not set by a tester, the exploit program repeats until it succeeds.
However, if the penetration fails in the system that this brute force attack is not
allowed, the framework reports that the corresponding service is ‘impenetrable’
at a trial.

3.3 Design Consideration for Sanitizing Exploit Codes

Pen-testing is performed using the same methods employed by an attacker. Con-
sequently, it executes coded commands after exploiting vulnerable hosts. Thus,
we have to make sure that this code is trustworthy and safe. In this section, we
consider the sanitization of exploit codes to guarantee these needs.

Pen-testing should provide the assurance of safety. Safety can be handled
by two parts: system part and service part. System safety means the safety
of whole system and includes the safety of all services in the system. Service
safety should meet the availability and the reliability of the service. Availability
means that the service is in operation and reliability means that the service
operates correctly. That is, we should verify that pen-testing against a service
does not affect the safety of other services and the system by creating back
doors, propagating worms, etc. In order to accomplish safe pen-testing, some
considerations for sanitizing each module in Fig. 2 are described as follows.

The buffer fabrication part is very important in some cases, especially when
a multi-threaded service in Windows is terminated after one of its threads gener-
ates an unhandled exception. Mis-prediction of a return address causes an appli-
cation to crash and Windows does not allow brute force attacks. Some methods
support relatively safe jumps to the shell code area by using the register. This
method also works well in a multi-threaded environment [16].



HackSim: An Automation of Penetration Testing 657

The function of the connection and transmission part is to deliver a shell-
code to the service of a remote system. In these parts, pen-testing will fail if
there are problems caused by a tester or by other factors such as the network
environment, service availability, etc. We take it for granted that there is no
problem connecting to the service of a remote system and just concentrate on
user faults to sanitize these parts. It is helpful to support libraries or modules
that are divided by protocol and to contain functions making communication
requests easily.

As mentioned before, shellcode can be divided into three parts: preprocess-
ing, body and termination. Among them, the body shellcode is the one to let
the tester execute arbitrary commands on the target machine. Therefore, this
part should be carefully checked so that the body shellcode does not affect the
integrity of the system and successfully sends results. Also, because the system
call number or the address of a kernel service in system library is different in
various operating systems, the body shellcode using kernel services should be
checked carefully.

The termination shellcode returns the exploited service to its normal state.
Most public exploit codes do not consider the importance of the termination
shellcode for the safety of pen-testing. An infected thread or process rarely goes
back to its normal state and polluted data makes it impossible to return a system
to its normal state. The best choice is always to terminate the thread or process
safely. To achieve this goal, we have to handle important tasks like releasing
resources used by the thread and restoring data in shared memory, etc. It is
not always a necessary task but the system might be impaired if we close our
eyes to this matter. After that, we should terminate the thread by calling the
corresponding function to exit it.

In some cases, not all modules of the extensible exploit framework need to
be inspected, but it is highly recommended that the shellcodes are sanitized
carefully, especially the body shellcode and the termination shellcode.

4 Implementation

This section describes the implementation issues of HackSim, based on previous
system design. HackSim was implemented on Linux operating systems using C
and Java for the exploit framework and the scanner program, respectively. It
can do pen-testing against Windows and Solaris operating systems.

4.1 Modularizing Exploit Codes

To implement a prototype of the proposed exploit framework, we collected pub-
licly available remote exploit codes for well-known vulnerabilities in Solaris and
Windows. We analyzed them and selected 7 exploit codes for rapid prototyping
of the proposed framework [14]. The characteristics of the seven vulnerabilities
and their exploits are listed on Table 1. The number of exploit codes is small,
but they cover the main exploits of Solaris and Windows. Their connection
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Table 1. Exploit codes used for implementing the exploit framework

CVE Index Target OS Connection Vulnerability Shellcode

CVE-2001-0236 snmpXdmid Solaris RPC Stack Overflow findsocket

CVE-2001-0797 telnetd Solaris Socket Stack Overflow bindsocket

CVE-2001-0803 dtspcd Solaris Socket Stack Overflow cmdshell

CVE-2002-0033 cachefsd Solaris RPC Heap Overflow findsocket

CAN-2003-0352 RPC-DCOM Windows RPC Stack Overflow bindsocket

CAN-2003-0533 LSASS Windows RPC Stack Overflow bindsocket

CAN-2003-0719 IIS-PCT Windows Socket Stack Overflow bindsocket
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Fig. 3. Two ways for executing specified commands on a remote target host

methods included both Socket and RPC, and their vulnerabilities included both
stack and heap overflow. In addition, their shellcodes manipulate commonly-used
codes such as findsocket, cmdshell, or bindsocket 5.

To integrate diverse exploit codes into a single framework, the most impor-
tant part is the shellcode. The proposed system uses the same shellcode for all
the different exploit codes. Hence, the verification of executing the shellcode is
integrated into the framework using the same code for each exploit code.

There are two ways for executing specified commands on a remote host us-
ing shellcodes as shown in Fig. 3. One is to execute commands on a root shell
acquired by connecting to a backdoor port that is opened on a target host by
shellcodes such as bindsocket. The other is to execute commands directly within
shellcodes invoking a root shell. We selected the latter to avoid leaving any back-
doors. We manually replaced the shellcodes of four exploit codes for Solaris with
a common shellcode “cmdshell” executing reverse telnet commands on a target
host [8]. Also, we replaced shellcodes of three exploit codes for Windows with a
common shellcode “connectback”, which provides the same result as executing
reverse telnet commands [13].

5 Assembly codes of findsocket, cmdshell, bindsocket are described in [7].
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4.2 Sanitizing Exploit Codes

Sanitizing the Body Shellcode

If public exploit codes are used to perform penetration testing as they are, un-
expected security holes may be left on target systems. For example, in Table 1,
exploit codes for ‘telnetd’ and ‘dtspcd’ services may leave backdoors on target
systems. The following code comes out of the exploit code for ‘dtspcd’ services,
and this shows how the exploit code creates a backdoor.

cmd[] = "echo \"ingreslock stream tcp nowait root /bin/sh sh -i
\"$>$/tmp/.x; /usr/sbin/inetd -s /tmp/.x;/bin/rm -f /tmp/.x";
execl("/bin/sh","/bin/sh","-c", cmd, 0);

If the above code is executed on a target system, a backdoor port is opened
on the system like the left figure of Fig. 3. Unless the backdoor port is closed
explicitly, it will remain a severe security hole.

In order to execute specified commands without leaving any backdoor on a
target system, we can use the following reverse telnet code [8].

cmd[] = "telnet target 1234 | /bin/sh | telnet target 5678";
execl("/bin/sh","/bin/sh","-c", cmd, 0);

Reverse telnet also allows the execution of commands on a compromised
system even when the system is protected by a firewall. This is due to the
fact that the security policy for incoming traffic is usually stricter than that of
outgoing traffic. For the purpose of satisfying the requirements of safety and
utilizing the benefits of reverse telnet, we used this technique in order to sanitize
every exploit codes for Solaris.

But, if the above command is used in shellcode, the exploit code does not
work because the second telnet session fails to write ‘stdout’ messages on the
target hosts. Accordingly, in order to redirect ‘stdout’ messages of the second
telnet session without printing out any messages, we added a ‘| sleep 1’ command
to cmd[].

Sanitizing the Termination Shellcode

If public exploit codes or the exploit framework of Metasploit is used in or-
der to perform pen-testing on the LSASS [18] vulnerability, unintended damage
on target systems occurs.

That is, they succeed in penetrating the systems, but if the command window
is closed, the target host is rebooted in one minute. The reason is that a multi-
threaded process in Windows is terminated when one of its threads generates an
unhandled exception. This problem can be solved by adding the ‘ExitThread’
function to the end of the termination shellcode instead of ‘ExitProcess’.

Also, we analyzed the RPCRT4 thread model because the exploit codes for
the LSASS vulnerability affects the RPCRT4 thread. The analysis is focused on



660 O-Hoon Kwon et al.

Fig. 4. A result of automated penetration testing using HackSim

whether the LSASS service works correctly after one thread is terminated using
the ‘ExitThread’ function call. From this analysis, we got the positive result that
the service is recovered and works well.

However, one problem remains. The exploit succeeds in Windows 2000 but
not always in Windows XP. The reason is that one value in the data part of
LSASRV.dll is changed to a wrong value during the exploit. The vulnerable
function changes this value to zero when the last byte of shellcode is not a new
line character, 0x0A. This zero value causes the following exploit or request to
fail. This problem can be solved easily by assigning a non zero value to the data
area or by adding a new line character to the last position of the shellcode.

4.3 Implementation Results

HackSim provides a high level of automation for labor-intensive pen-testing. Se-
lectable options allow testing a wider range of targets and provide professional
pen-testers with a flexible testing environment. Also, the result of penetration ap-
pears in the status window and provides collective evidence with higher accuracy
than existing scanners. When the exploit works, the tool provides a privileged
access on the newly created window in order to provide an evidence about ex-
ploited targets. By terminating the window, all connections are simply cleaned
up without leaving behind any security hole. Fig. 4 shows pen-testing results
using HackSim.

In addition, HackSim provides the extensibility for newly found vulnerabil-
ities. This tool supports remote buffer overflow vulnerabilities that are used in
the recent most worms. Also, it includes a sanitized shellcode that can be used
commonly for all exploit codes. Therefore, HackSim can be easily extended to
support exploit codes for newly found remote buffer overflow vulnerabilities.
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5 Conclusion

In this paper, we have proposed an extensible exploit framework for an au-
tomation of pen-testing without loss of safety and described considerations for
sanitizing unreliable codes in each part of the framework. Furthermore, a pen-
etration testing tool, HackSim, is implemented on the basis of this framework.
The enhanced HackSim can perform automated penetration testing without loss
of safety and collect probed evidence if it succeeded in penetrating a system.
Experiments against Solaris and Windows systems have shown how safely we
can retrieve the most important information using automated pen-testing.

From the fact that penetrating a network is often done by exploiting a well-
known weakness, this study is one step toward confirming the usefulness of au-
tomated pen-testing. The extension of HackSim to enhance the extensibility for
newly found vulnerability and support the automation of the sanitization process
remains for future work.
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